首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315篇
  免费   27篇
  342篇
  2022年   4篇
  2019年   3篇
  2017年   5篇
  2016年   6篇
  2015年   4篇
  2014年   6篇
  2013年   23篇
  2012年   13篇
  2011年   11篇
  2010年   8篇
  2009年   6篇
  2008年   8篇
  2007年   11篇
  2006年   3篇
  2005年   13篇
  2004年   10篇
  2003年   9篇
  2002年   11篇
  2001年   8篇
  2000年   9篇
  1999年   12篇
  1998年   4篇
  1997年   7篇
  1996年   2篇
  1995年   7篇
  1994年   9篇
  1993年   3篇
  1992年   9篇
  1991年   6篇
  1990年   3篇
  1989年   9篇
  1988年   5篇
  1987年   6篇
  1986年   7篇
  1985年   8篇
  1984年   6篇
  1983年   7篇
  1982年   4篇
  1980年   3篇
  1979年   3篇
  1978年   4篇
  1977年   5篇
  1976年   2篇
  1975年   3篇
  1974年   9篇
  1973年   2篇
  1972年   7篇
  1970年   2篇
  1968年   7篇
  1966年   2篇
排序方式: 共有342条查询结果,搜索用时 0 毫秒
91.
The enzyme kinetic studies with endonucleases specific for single-stranded DNA and the thermal denaturation analyses of DNA showed that a high mobility group (HMG) nonhistone protein fraction HMG (1 + 2), composed of HMG1 and HMG2, has an activity to unwind DNA partially at low protein-to-DNA weight ratio. Isolated HMG1 and HMG2 have the same activity. Divalent cations such as Mg++ or Ca++ were necessary for the unwinding reaction. A peptide containing high glutamic and aspartic (HGA) region, isolated from the tryptic digest of HMG (1 + 2), unwound DNA depending on the presence of Mg++ or Ca++, suggesting that the HMA region in HMG protein is the active site for the DNA unwinding reaction. Poly-L-glutamic acid, employed as a model peptide of the HGA region, showed the activity. Finally, mechanisms of the DNA unwinding reaction by the HMG protein and possible role of the divalent cations are discussed.  相似文献   
92.
93.
94.
95.
96.
Most Brassicaceae vegetables are ideal dietary sources of antioxidants beneficial for human health. Cardamine fauriei (Ezo-wasabi in Japanese) is a wild, edible Brassicaceae herb native to Hokkaido, Japan. To clarify the main antioxidative phytochemical, an 80% methanol extraction from the leaves was fractionated with Diaion® HP-20, Sephadex® LH-20, and Sep-Pak® C18 cartridges, and the fraction with strong antioxidant activity depending on DPPH method was purified by HPLC. Based on the analyses using HRESIMS and MS/MS, the compound might be N1, N14-diferuloylspermine. This rare phenol compound was chemically synthesized, whose data on HPLC, MS and 1H NMR were compared with those of naturally derived compound from C. fauriei. All results indicated they were the same compound. The radical-scavenging properties of diferuloylspermine were evaluated by ORAC and ESR spin trapping methods, with the diferuloylspermine showing high scavenging activities of the ROO·, O2·?, and HO· radicals as was those of conventional antioxidants.  相似文献   
97.
Transglutaminase 2 (TG2) has been reported to be involved in cell growth through the formation of epsilon-(gamma-glutamyl) lysine (Gln-Lys) or N-(gamma-glutamyl) polyamine (Gln-polyamine). We have recently reported that the inhibition of Gln-Lys cross-linking by the formation of Gln-spermidine led to the increase of DNA synthesis in regenerating rat liver. TG2 may catalyze the replacement reaction between Lys residues in protein and polyamines. In the present study, we attempted to develop an experimental model for ascertaining this replacement reaction. We examined whether or not TG2 exhibited the association and dissociation reaction of Gln-polyamine bond in protein, using N,N-dimethylcasein (DC). The dissociated polyamines were identified by autoradiography. The dissociation of [(14)C] polyamines from DC bond [(14)C] polyamines complex by TG2 could occur in the presence of non-radioactive polyamines as second amine donor, whereas in the absence, could not almost occur. Moreover, it was indicated that this release of old [(14)C] polyamine bonded to DC was due to binding of added new [(14)C] polyamine to Gln residues in DC. These results demonstrate that TG2 catalyzes the replacement reaction between added [(14)C] polyamine and DC bond [(14)C] polyamine. The dissociation and association reaction may both occur together, the new DC-polyamine complex being formed at the same time as the dissociation of old DC-polyamine complex, since readying a second amine donor is necessary to dissociate DC-polyamine complex. These results indicate that this experimental model is successful in the study of TG2-catalyzed dissociation and association reaction of Gln-polyamine bond in protein.  相似文献   
98.
Phe286 located in the center of the active site of alpha-amylase 2 from Thermoactinomyces vulgaris R-47 (TVAII) plays an important role in the substrate recognition for cyclomaltooligosaccharides (cyclodextrins). The X-ray structures of mutant TVAIIs with the replacement of Phe286 by Ala (F286A) and Tyr (F286Y) were determined at 3.2 A resolution. Their structures have no significant differences from that of the wild-type enzyme. The kinetic analyses of Phe286-replaced variants showed that the variants with non-aromatic residues, Ala (F286A) and Leu (F286L), have lower enzymatic activities than those with aromatic residues, Tyr (F286Y) and Trp (F286W), and the replacement of Phe286 affects enzymatic activities for CDs more than those for starch.  相似文献   
99.
100.
Histidine kinase Hik33 responds to a variety of stress conditions and regulates the expression of stress-inducible genes in the cyanobacterium Synechocystis sp. PCC 6803. However, the mechanisms of response and regulation remain unknown. Generally, a histidine kinase perceives a specific signal via its N-terminal region. Hik33 has two transmembrane helices, a periplasmic loop, and HAMP and PAS domains in its N-terminal region, all of which might be involved in signal perception. To investigate the functions of these subdomains in vivo, we expressed a chimeric histidine kinase (Hik33n-SphSc) by fusing the N-terminal region of Hik33 with the C-terminal region of a sensory histidine kinase that is activated under phosphate-deficient conditions, SphS. Hik33n-SphSc responded to several stimuli that are perceived by intact Hik33 and regulated expression of the phoA gene for alkaline phosphatase, which is normally regulated under phosphate-deficient conditions by SphS. We introduced genes for modified versions of Hik33n-SphSc into Synechocystis and monitored expression of phoA under standard and stress conditions. Hik33n-SphSc lacking either the transmembrane helices or both the HAMP and PAS domains had no kinase activity, whereas Hik33n-SphSc lacking the HAMP or the PAS domain enhanced expression of phoA. Moreover, variants of Hik33n-SphSc, in which the membrane-localizing region was replaced by those of other histidine kinases, also responded to stress conditions. Thus, transmembrane helices, regardless of sequence, appear to be essential for the function of Hik33, while the HAMP and PAS domains play important roles in regulating kinase activity in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号