首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3447篇
  免费   200篇
  国内免费   2篇
  2022年   20篇
  2021年   49篇
  2020年   22篇
  2019年   46篇
  2018年   41篇
  2017年   52篇
  2016年   79篇
  2015年   117篇
  2014年   127篇
  2013年   215篇
  2012年   228篇
  2011年   214篇
  2010年   149篇
  2009年   161篇
  2008年   204篇
  2007年   212篇
  2006年   188篇
  2005年   205篇
  2004年   185篇
  2003年   183篇
  2002年   183篇
  2001年   47篇
  2000年   37篇
  1999年   61篇
  1998年   35篇
  1997年   36篇
  1996年   32篇
  1995年   22篇
  1994年   17篇
  1993年   32篇
  1992年   44篇
  1991年   44篇
  1990年   33篇
  1989年   40篇
  1988年   29篇
  1987年   19篇
  1986年   27篇
  1985年   21篇
  1984年   26篇
  1983年   22篇
  1982年   27篇
  1981年   15篇
  1980年   7篇
  1979年   12篇
  1978年   12篇
  1977年   6篇
  1975年   10篇
  1974年   15篇
  1973年   5篇
  1972年   5篇
排序方式: 共有3649条查询结果,搜索用时 15 毫秒
81.
Effects of 3-(3, 4-dichlorophenyl)-l, 1-dimethylurea (DCMU)on photosynthetic oxygen evolution, respiratory oxygen uptake,phototactic response and swimming rate in Cryptomonas sp. weredetermined and compared. Photosynthetic oxygen evolution wascompletely inhibited in the presence of 10–5 M DCMU. Thetreatment did not significantly affect the rates of respiratoryoxygen uptake, phototaxis, and swimming, indicating that directparticipation of photosynthesis in the phototaxis of this algacan be ruled out. Wavelength dependency of photosynthetic oxygen evolution wasalso determined in the range of 560 to 700 nm. The rate of photosyntheticoxygen evolution at 680 nm was as high as that at 560 nm, butno phototactic activity was seen at 680 nm although it was maximumat 560 nm. This is consistent with the above conclusion. (Received February 16, 1976; )  相似文献   
82.
One of the constituents of polyoxin J, 2-amino-5-O-carbamoyl-2-deoxy-l-xylonic acid (3), has been synthesized stereoselectively from l-sorbopyranose. The amino acid function of 3 was formed in the final stage of the synthesis by reduction of the corresponding α-azido carboxylic acid.  相似文献   
83.
Attempts were made to isolate and identify the unit chemical structure essential for manifestation of the immunoadjuvant activities characteristic of bacterial cell walls. The N-acetylmuramyl-peptide subunit monomers, Nalpha-(N-acetylmuramyl-L-alanyl-D-isoglutaminyl)-Nepsilon-(glycylglycyl)-L-lysyl-D-alanine from the cell walls of Staphylococcus aureus (FDA 209P) and N-acetylmuramyl-L-alanyl-D-isoglutaminyl-meso-diaminopimelic acid and/or N-acetylmuramyl-L-alanyl-D-isoglutaminyl-meso-diaminopimelyl-D-alanine from those of Lactobacillus plantarum (ATCC 8014), were shown to be unit chemical entities with definite adjuvant activity both in stimulation of antibody production and in induction of delayed-type hypersensitivity to ovalbumin when administered to guinea-pigs as water-in-oil emulsions.  相似文献   
84.
85.
The 1979 amino acid sequence of embryonic chicken gizzard smooth muscle myosin heavy chain (MHC) have been determined by cloning and sequencing its cDNA. Genomic Southern analysis and Northern analysis with the cDNA sequence show that gizzard MHC is encoded by a single-copy gene, and this gene is expressed in the gizzard and aorta. The encoded protein has a calculated Mr of 229 X 10(3), and can be divided into a long alpha-helical rod and a globular head. Only 32 to 33% of the amino acid residues in the rod and 48 to 49% in the head are conserved when compared with nematode or vertebrate sarcomeric MHC sequences. However, the seven residue hydrophobic periodicity, together with the 28 and 196 residue repeat of charge distribution previously described in nematode myosin rod, are all present in the gizzard myosin rod. Two of the trypsin-sensitive sites in gizzard light meromyosin have been mapped by partial peptide sequencing to 99 nm and 60 nm from the tip of the myosin tail, where these sites coincide with the two "hinges" for the 6 S/10 S transition. In the head sequence, several polypeptide segments, including the regions around the putative ATP-binding site and the reactive thiol groups, are highly conserved. These areas presumably reflect conserved structural elements important for the function of myosin. A multi-domain folding model of myosin head is proposed on the basis of the conserved sequences, information on the topography of myosin in the literature, and the predicted secondary structures. In this model, Mg2+ ATP is bound to a pocket between two opposing alpha/beta domains, while actin undergoes electrostatic interactions with lysine-rich surface loops on two other domains. The actin-myosin interactions are thought to be modulated through relative movements of the domains induced by the binding of ATP.  相似文献   
86.
Fbxo45 is an F-box protein that is restricted to the nervous system. Unlike other F-box proteins, Fbxo45 was found not to form an SCF complex as a result of an amino acid substitution in the consensus sequence for Cul1 binding. Proteomics analysis revealed that Fbxo45 specifically associates with PAM (protein associated with Myc), a RING finger-type ubiquitin ligase. Mice deficient in Fbxo45 were generated and found to die soon after birth as a result of respiratory distress. Fbxo45/ embryos show abnormal innervation of the diaphragm, impaired synapse formation at neuromuscular junctions, and aberrant development of axon fiber tracts in the brain. Similar defects are also observed in mice lacking Phr1 (mouse ortholog of PAM), suggesting that Fbxo45 and Phr1 function in the same pathway. In addition, neuronal migration was impaired in Fbxo45/ mice. These results suggest that Fbxo45 forms a novel Fbxo45-PAM ubiquitin ligase complex that plays an important role in neural development.Ubiquitin-dependent proteolysis is indispensable for various biological processes (3, 40). Protein ubiquitylation is mediated by several enzymes that act in concert, with a ubiquitin ligase (E3) playing a key role in substrate recognition (14). E3 enzymes contain specific structural motifs that mediate recruitment of a ubiquitin-conjugating enzyme (E2), with these motifs including HECT, RING finger, U-box, and PHD finger domains (30). The SCF complex consists of Skp1 (adaptor subunit), Cul1 (scaffold subunit), an F-box protein (substrate recognition subunit), and Rbx1 (also known as Roc1 or Hrt1; RING finger-containing subunit). Whereas Skp1, Cul1, and Rbx1 are common to all SCF complexes, the F-box protein is variable (with ∼70 such proteins having been identified in humans) and confers substrate specificity.Fbxo45 is an F-box protein that was originally isolated as an estrogen-induced protein (47). Human and mouse Fbxo45 genes comprise three exons and possess several consensus binding sequences for the estrogen receptor in the promoter region. Fbxo45 mRNA is rapidly induced on exposure of MCF-7 cells to 17β-estradiol (47). FSN-1, the Caenorhabditis elegans ortholog of Fbxo45, binds to RPM-1 (regulator of presynaptic morphology 1) together with CUL-1 and SKR-1, the C. elegans orthologs of mammalian Cul1 and Skp1, respectively (21, 46). RPM-1 belongs to an evolutionarily conserved family of proteins (the PHR family) that include Highwire (HIW) (Drosophila melanogaster), Esrom (Danio rerio), Phr1 (Mus musculus), and protein associated with Myc (PAM) (Homo sapiens), each of which contains a RING-finger domain that is required for its E3 activity (7, 20, 21, 27, 44). Complete loss of function of fsn-1 in C. elegans results in defects that are characterized by the simultaneous presence of overdeveloped and underdeveloped neuromuscular junctions (NMJs) and which are similar to, but not as pronounced as, those observed in rpm-1/ mutants. These genetic findings support the notion that the functions of FSN-1 and RPM-1 are partially overlapping (21).Although PHR family members interact with many potential targets (11, 24, 26, 31), genetic data have shown that one key substrate of RPM-1 and HIW is the mitogen-activated protein kinase kinase kinase known as DLK (dual leucine zipper kinase) in C. elegans and known as Wallenda in D. melanogaster, respectively. The abundance of this kinase is increased in rpm-1 or hiw mutants, and synaptic defects in the mutant worms and flies are suppressed by a loss of DLK or Wallenda. Furthermore, an increase in the level of DLK or Wallenda is sufficient to phenocopy the synaptic defects of the rpm-1 or hiw mutants (5, 27). PAM has also been shown to catalyze the ubiquitylation of tuberin (TSC2) and to regulate signaling by mTOR (mammalian target of rapamycin) in human cells (12).To elucidate the physiological functions of Fbxo45 in mammals, we have now generated mice deficient in this protein. Analysis of the mutant mice revealed that Fbxo45 is required for normal neuromuscular synaptogenesis, axon pathfinding, and neuronal migration. Moreover, we found that Fbxo45 does not form an authentic SCF complex as a result of an amino acid substitution in the F-box domain, and we identified PAM as a binding partner of Fbxo45. The phenotype of Fbxo45/ mice was found to be similar to that of Phr1/ mice, especially with regard to the defects of neuromuscular synapse formation and of axon navigation. Our results indicate that three fundamental processes of neural development— axonal projection, synapse formation, and neuronal migration—may be linked by a common machinery consisting of the Fbxo45-Phr1 complex.  相似文献   
87.
88.
Calpastatin, an endogenous inhibitor of calpain, is composed of domain L and four repetitive homologous domains 1-4. Domains 1-4 inhibit calpain, whereas domain L partially reprimes L-type Ca2+ channels for voltage-gated activation. In the present study, the effects on Ca2+ channel activity of four isoforms and a series of fragments of calpastatin domain L were investigated in guinea-pig ventricular myocytes with the patch-clamp method. With one exception, all the isoforms and fragment peptides that contained amino acid residues 54-64 of domain L reprimed the Ca2+ channels to comparable levels (9-15% of control activity) to those observed previously with a full-length form of calpastatin. These results suggest that the region containing amino acid residues 54-64 (EGKPKEHTEPK) is responsible for the Ca2+ channel repriming function of calpastatin domain L.  相似文献   
89.
Delineation of the fish family Percichthyidae (Percomorphaceae) has a long and convoluted history, with recent morphological-based studies restricting species members to South American and Australian freshwater and catadromous temperate perches. Four recent nuclear gene-based phylogenetic studies, however, found that the Percichthyidae was not monophyletic and was nested within a newly discovered inter-familial clade of Percomorphaceae, the Centrarchiformes, which comprises the Centrarchidae and 12 other families. Here, we reexamined the systematics of the Percichthyidae and Centrarchiformes based on new mitogenomic information. Our mitogenomic results are globally congruent with the recent nuclear gene-based studies although the overall amount of phylogenetic signal of the mitogenome is lower. They do not support the monophyly of the Percichthyidae, because the catadromous genus Percalates is not exclusively related to the freshwater percichthyids. The Percichthyidae (minus Percalates) and Percalates belong to a larger clade, equivalent to the Centrarchiformes, but their respective sister groups are unresolved. Because all recent analyses recover a monophyletic Centrarchiformes but with substantially different intra-relationships, we performed a simultaneous analysis for a character set combining the mitogenome and 19 nuclear genes previously published, for 22 centrarchiform taxa. This analysis furthermore indicates that the Centrarchiformes are divided into three lineages and the superfamily Cirrhitoidea is monophyletic as well as the temperate and freshwater centrarchiform perch-like fishes. It also clarifies some of the relationships within the freshwater Percichthyidae.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号