首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7448篇
  免费   369篇
  国内免费   5篇
  7822篇
  2023年   14篇
  2022年   52篇
  2021年   76篇
  2020年   58篇
  2019年   58篇
  2018年   86篇
  2017年   69篇
  2016年   165篇
  2015年   240篇
  2014年   244篇
  2013年   556篇
  2012年   472篇
  2011年   503篇
  2010年   303篇
  2009年   286篇
  2008年   496篇
  2007年   527篇
  2006年   468篇
  2005年   465篇
  2004年   523篇
  2003年   400篇
  2002年   417篇
  2001年   86篇
  2000年   72篇
  1999年   80篇
  1998年   103篇
  1997年   81篇
  1996年   74篇
  1995年   76篇
  1994年   65篇
  1993年   56篇
  1992年   58篇
  1991年   61篇
  1990年   50篇
  1989年   42篇
  1988年   51篇
  1987年   33篇
  1986年   36篇
  1985年   24篇
  1984年   34篇
  1983年   26篇
  1982年   25篇
  1981年   30篇
  1980年   30篇
  1979年   16篇
  1978年   14篇
  1977年   21篇
  1976年   19篇
  1975年   13篇
  1973年   14篇
排序方式: 共有7822条查询结果,搜索用时 32 毫秒
101.
BackgroundThe efficacy of intramuscular islet transplantation is poor despite being technically simple, safe, and associated with reduced rates of severe complications. We evaluated the efficacy of combined treatment with extracellular matrix (ECM) and growth factors in intramuscular islet transplantation.MethodsMale BALB/C mice were used for the in vitro and transplantation studies. The following three groups were evaluated: islets without treatment (islets-only group), islets embedded in ECM with growth factors (Matrigel group), and islets embedded in ECM without growth factors [growth factor-reduced (GFR) Matrigel group]. The viability and insulin-releasing function of islets cultured for 96 h were significantly improved in Matrigel and GFR Matrigel groups compared with the islets-only group.ResultsBlood glucose and serum insulin levels immediately following transplantation were significantly improved in the Matrigel and GFR Matrigel groups and remained significantly improved in the Matrigel group at postoperative day (POD) 28. On histological examination, significantly decreased numbers of TdT-mediated deoxyuridine triphosphate-biotin nick end labeling-positive islet cells and significantly increased numbers of Ki67-positive cells were observed in the Matrigel and GFR Matrigel groups at POD 3. Peri-islet revascularization was most prominent in the Matrigel group at POD 14.ConclusionsThe efficacy of intramuscular islet transplantation was improved by combination treatment with ECM and growth factors through the inhibition of apoptosis, increased proliferation of islet cells, and promotion of revascularization.  相似文献   
102.
Thirteen yeast strains were isolated from deep-sea sediment samples collected at a depth of 4500 m to 6500 m in the Japan Trench. Amongst them, strain N6 possessed high tolerance against Cu2+ and could grow on yeast extract/peptone/dextrose/agar containing 50 mM CuSO4. Analysis of the 18S rDNA sequence indicates strain N6 belongs to the genus Cryptococcus. In contrast, the type strain of C. albidus, a typical marine yeast Rhodotorula ingeniosa and Saccharomyces cerevisiae did not grow at high concentrations of CuSO4. Superoxide dismutase (SOD) catalyzes the scavenging of superoxide radicals. The activity of SOD in cell extract of strain N6 was very weak (<1 mU g–1 total protein) when the strain was grown in the absence of CuSO4. However, the activity was stimulated (25.8 mU g–1 total protein) when cells were grown with 1 mM CuSO4 and further enhanced to 110 mU g–1 total protein with 10 mM CuSO4. Catalase activity was increased only 1.4 or 1.1-fold with 1 mM or 10 mM CuSO4 in the growth medium, respectively. These results suggest that SOD may have a role in the defensive mechanisms against high concentrations of CuSO4 in strain N6.  相似文献   
103.
Summary Phosphorylases (EC 2.4.1.1) from potato and rabbit muscle are similar in many of their structural and kinetic properties, despite differences in regulation of their enzyme activity. Rabbit muscle phosphorylase is subject to both allosteric and covalent controls, while potato phosphorylase is an active species without any regulatory mechanism. Both phosphorylases are composed of subunits of approximately 100 000 molecular weight, and contain a firmly bound pyridoxal 5-phosphate. Their actions follow a rapid equilibrium random Bi Bi mechanism. From the sequence comparison between the two phosphorylases, high homologies of widely distributed regions have been found, suggesting that they may have evolved from the same ancestral protein. By contrast, the sequences of the N-terminal region are remarkably different from each other. Since this region of the muscle enzyme forms the phosphorylatable and AMP-binding sites as well as the subunit-subunit contact region, these results provide the structural basis for the difference in the regulatory properties between potato and rabbit muscle phosphorylases. Judged from CD spectra, the surface structures of the potato enzyme might be significantly different from that of the muscle enzyme. Indeed, the subunit-subunit interaction in the potato enzyme is tighter than that in the muscle enzyme, and the susceptibility of the two enzymes toward modification reagents and proteolytic enzymes are different. Despite these differences, the structural and functional features of the cofactor, pyridoxal phosphate, site are surprisingly well conserved in these phosphorylases. X-ray crystallographic studies on rabbit muscle phosphorylase have shown that glucose-1-phosphate and orthophosphate bind to a common region close to the 5-phosphate of the cofactor. The muscle enzyme has a glycogen storage site for binding of the enzyme to saccharide substrate, which is located away from the cofactor site. We have obtained, in our reconstitution studies, evidence for binding of saccharide directly to the cofactor site of potato phosphorylase. This difference in the topography of the functional sites explains the previously known different specificities for saccharide substrates in the two phosphorylases. Based on a combination of these and other studies, it is now clear that the 5-phosphate group of pyridoxal phosphate plays a direct role in the catalysis of this enzyme. Information now available on the reaction mechanism of phosphorylase is briefly described.  相似文献   
104.
The B cell membrane molecules CD22 and CD72 contain ITIMs in their cytoplasmic portion, and negatively regulate signaling through BCR. Various lines of evidence suggest that ligation of BCR containing IgG (IgG-BCR) transmits augmented signaling due to lack of CD22-mediated signal regulation. However, the signaling capacities of BCR containing IgA and IgE remain largely undefined. In this study, we demonstrate that both IgE-BCR and IgG-BCR, but not IgA-BCR, transmit augmented signaling compared with IgM-BCR. Ligation of IgE-BCR does not induce signaling events required for CD22-mediated signal inhibition, and restoration of these signaling events by coligation of CD22 with BCR abrogates signal augmentation. Furthermore, the cytoplasmic portion of IgE but not that of IgA is sufficient for suppressing CD22-mediated signal inhibition. These findings strongly suggest that the cytoplasmic portion of IgE but not that of IgA reverses CD22-mediated signal inhibition, leading to augmentation of signaling through IgE-BCR but not IgA-BCR. Augmented IgE-BCR signaling appears to play a role in production of large amounts of IgE during helminth infection, whereas regulated signaling through IgA-BCR may be crucial for constitutive production of IgA for mucosal immunity.  相似文献   
105.
The class I myosin genes are conserved in diverse organisms, and their gene products are involved in actin dynamics, endocytosis, and signal transduction. Drosophila melanogaster has three class I myosin genes, Myosin 31DF (Myo31DF), Myosin 61F (Myo61F), and Myosin 95E (Myo95E). Myo31DF, Myo61F, and Myo95E belong to the Myosin ID, Myosin IC, and Myosin IB families, respectively. Previous loss-of-function analyses of Myo31DF and Myo61F revealed important roles in left–right (LR) asymmetric development and enterocyte maintenance, respectively. However, it was difficult to elucidate their roles in vivo, because of potential redundant activities. Here we generated class I myosin double and triple mutants to address this issue. We found that the triple mutant was viable and fertile, indicating that all three class I myosins were dispensable for survival. A loss-of-function analysis revealed further that Myo31DF and Myo61F, but not Myo95E, had redundant functions in promoting the dextral LR asymmetric development of the male genitalia. Myo61F overexpression is known to antagonize the dextral activity of Myo31DF in various Drosophila organs. Thus, the LR-reversing activity of overexpressed Myo61F may not reflect its physiological function. The endogenous activity of Myo61F in promoting dextral LR asymmetric development was observed in the male genitalia, but not the embryonic gut, another LR asymmetric organ. Thus, Myo61F and Myo31DF, but not Myo95E, play tissue-specific, redundant roles in LR asymmetric development. Our studies also revealed differential colocalization of the class I myosins with filamentous (F)-actin in the brush border of intestinal enterocytes.  相似文献   
106.
107.
Maeda T  Furusho Y  Takata T 《Chirality》2002,14(7):587-590
Poly(binaphthyl salen manganese complex)es 3-Mn were synthesized from a 3,3'-diformylbinaphthol derivative, alpha,omega-diamines, and Mn(OAc)2. Their helical structures were well-supported by their IR, UV, and CD spectra. The catalysis of 3-Mn in an asymmetric epoxidation was investigated.  相似文献   
108.
The trichothecene 3-O-acetyltransferase gene (FgTri101) required for trichothecene production by Fusarium graminearum is located between the phosphate permease gene (pho5) and the UTP-ammonia ligase gene (ura7). We have cloned and sequenced the pho5-to-ura7 regions from three trichothecene nonproducing Fusarium (i.e., F. oxysporum, F. moniliforme, and Fusarium species IFO 7772) that belong to the teleomorph genus Gibberella. BLASTX analysis of these sequences revealed portions of predicted polypeptides with high similarities to the TRI101 polypeptide. While FspTri101 (Fusarium species Tri101) coded for a functional 3-O-acetyltransferase, FoTri101 (F. oxysporum Tri101) and FmTri101 (F. moniliforme Tri101) were pseudogenes. Nevertheless, F. oxysporum and F. moniliforme were able to acetylate C-3 of trichothecenes, indicating that these nonproducers possess another as yet unidentified 3-O-acetyltransferase gene. By means of cDNA expression cloning using fission yeast, we isolated the responsible FoTri201 gene from F. oxysporum; on the basis of this sequence, FmTri201 has been cloned from F. moniliforme by PCR techniques. Both Tri201 showed only a limited level of nucleotide sequence similarity to FgTri101 and FspTri101. The existence of Tri101 in a trichothecene nonproducer suggests that this gene existed in the fungal genome before the divergence of producers from nonproducers in the evolution of Fusarium species.  相似文献   
109.
It is well recognized that the Shiga-like toxins (Stxs) preferentially bind to Gb3 glycolipids and the cholera toxin (CT) and heat-labile enterotoxin (LTp) bind to GM1 gangliosides. After binding to the cell surface, A-B bacterial enterotoxins have to be internalized by endocytosis. The transport of the toxin-glycolipid complex has been documented in several manners but the actual mechanisms are yet to be clarified. We applied a heterobifunctional cross-linker, sulfosuccinimidyl-2-(p-azidosalicylamido)-1,3'-dithiopropionate (SASD), to detect the membrane proteins involved in the binding and the transport of A-B bacterial enterotoxins in cultured cells. Both Stx1 and Stx2 bound to the detergent-insoluble microdomain (DIM) of Vero cells and Caco-2 cells, which were susceptible to the toxin, but neither was bound to insusceptible CHO-K1 cells. Both CT and LTp bound to the DIM of Vero cells, Caco-2 cells, and CHO-K1 cells. In a cross-linking experiment, Stx1 cross-linked only with a 27-kDa molecule, while Stx2, which was more potently toxic than Stx1, cross-linked with 27- and 40-kDa molecules of Vero cells as well as of Caco-2 cells; moreover, no molecules were cross-linked with the insusceptible CHO-K1 cells. LTp was cross-linked only to the 27-kDa molecule of these three cell types but the CT, which was more toxic than LTp, was also cross-linked with 27- and 40-kDa molecules of Vero cells, Caco-2 cells, and CHO-K1 cells. The 27- and the 40-kDa molecules might play a role in the endocytosis and retrograde transport of A-B bacterial enterotoxins.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号