全文获取类型
收费全文 | 18860篇 |
免费 | 1692篇 |
国内免费 | 1431篇 |
专业分类
21983篇 |
出版年
2023年 | 243篇 |
2022年 | 531篇 |
2021年 | 894篇 |
2020年 | 609篇 |
2019年 | 691篇 |
2018年 | 735篇 |
2017年 | 539篇 |
2016年 | 702篇 |
2015年 | 1151篇 |
2014年 | 1265篇 |
2013年 | 1365篇 |
2012年 | 1562篇 |
2011年 | 1498篇 |
2010年 | 980篇 |
2009年 | 833篇 |
2008年 | 905篇 |
2007年 | 875篇 |
2006年 | 771篇 |
2005年 | 657篇 |
2004年 | 617篇 |
2003年 | 544篇 |
2002年 | 515篇 |
2001年 | 392篇 |
2000年 | 390篇 |
1999年 | 359篇 |
1998年 | 168篇 |
1997年 | 161篇 |
1996年 | 158篇 |
1995年 | 119篇 |
1994年 | 146篇 |
1993年 | 90篇 |
1992年 | 155篇 |
1991年 | 147篇 |
1990年 | 123篇 |
1989年 | 98篇 |
1988年 | 82篇 |
1987年 | 96篇 |
1986年 | 83篇 |
1985年 | 92篇 |
1984年 | 48篇 |
1983年 | 48篇 |
1982年 | 48篇 |
1981年 | 36篇 |
1980年 | 37篇 |
1979年 | 52篇 |
1978年 | 41篇 |
1977年 | 45篇 |
1976年 | 33篇 |
1975年 | 35篇 |
1974年 | 44篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
In our previous experiments, evidence of free radical formation has been demonstrated in gerbil brain after kainic acid (KA) administration. In the present study, the mechanisms involved in KA-induced free radical formation and subsequent cell degeneration were investigated using high density cortical neuron cultures. A free radical trapping agent,a-phenyl-N-tert-butyl-nitrone (PBN), as well as the combined action of superoxide dismutase and catalase attenuated KA neurotoxic effect. Calpain-induced xanthine oxidase (XO) activation may play an important role in KA excitotoxicity since calpain inhibitor I as well as allopurinol, a selective XO inhibitor, significantly protected the cortical neurons from KA-induced cell death. However, XO activation may not be the only source producing free radicals, other free radical generating systems such as nitric oxide synphase may also play a role in KA insult. 相似文献
92.
93.
myo-Inositol monophosphate phosphatase (IMPase) has been purified 888-fold to apparent homogeneity from procine brains. The purification procedure involves: homogenization, ammonium sulfate fractionation, and a number of ion-exchange and gel-filtration chromatography steps. The purified enzyme exhibited a final specific activity of 932 nmol . min(-1) . mg(-1). The molecular mass of the enzyme was estimated to be 29kDa by SDS poly-acrylamide gel electrophoresis and 58 +/- 5 kDa by HPLC gel filtration in 10mM Tris-HCI, pH 7.4. Kinetic measurements have shown that the apparent K(m) value of the phosphatase for the utilization of inositol-1-phosphate and beta-glycerol phosphate are 3.20 x 10(-4) and 8 x 10(-3) M, respectively. Similar to the same enzyme isolated from bovine brains, the porcine brain enzyme has been shown to be inhibited by lithium. The K(1) was determined to be 6.38 x 10(-4) M and the inhibition is uncompetitive. (c) 1995 John Wiley & Sons, Inc. 相似文献
94.
Ruizhe Shen Shengjian Qi Shidan Cheng 《Biochemical and biophysical research communications》2010,394(4):1047-38
High levels of SOX4 expression have been found in a variety of human cancers, such as lung, brain and breast cancers. However, the expression of SOX4 in gastric tissues remains unknown. The SOX4 expression was detected using immunohistochemical staining and semi-quantitative RT-PCR, and our results showed that SOX4 was up-regulated in gastric cancer compared to benign gastric tissues. To further elucidate the molecular mechanisms underlying up-regulation of SOX4 in gastric cancers, we analyzed the expression of microRNA-129-2 (miR-129-2) gene, the epigenetic repression of which leads to overexpression of SOX4 in endometrial cancer. We found that up-regulation of SOX4 was inversely associated with the epigenetic silencing of miR-129-2 in gastric cancer, and restoration of miR-129-2 down-regulated SOX4 expression. We also found that inactivation of SOX4 by siRNA and restoration of miR-129-2 induced apoptosis in gastric cancer cells. 相似文献
95.
96.
The cystic fibrosis transmembrane conductance regulator (CFTR)-interacting protein, CFTR-associated ligand (CAL) down-regulates total and cell surface CFTR by targeting CFTR for degradation in the lysosome. Here, we report that a Rho family small GTPase TC10 interacts with CAL. This interaction specifically up-regulates CFTR protein expression. Co-expression of the constitutively active form, TC10Q75L, increases total and cell surface CFTR in a dose-dependent fashion. Moreover, co-expression of the dominant-negative mutant TC10T31N causes a dose-dependent reduction in mature CFTR. The effect of TC10 is independent of the level of CFTR expression, because a similar effect was observed in a stable cell line that expresses one-tenth of CFTR. Co-expression of TC10Q75L did not have a similar effect on the expression of plasma membrane proteins such as Frizzled-3 and Pr-cadherin or cytosolic proteins such as tubulin and green fluorescent protein. TC10Q75L also did not have a similar effect on the vesicular stomatitis virus glycoprotein. Co-expression of constitutively active and dominant-negative forms of Cdc42 or RhoA did not affect CFTR expression in a manner similar to TC10, indicating that the effect of TC10 is unique within the Rho family. Metabolic pulse-chase experiments show that TC10 did not affect CFTR maturation, suggesting that it exerts its effects on the mature CFTR. Importantly, TC10Q75L reverses CAL-mediated CFTR degradation, suggesting that TC10Q75L inhibits CAL-mediated degradation of CFTR. TC10Q75L does not operate by reducing CAL protein expression or its ability to form dimers or interact with CFTR. Interestingly, the expression of TC10Q75L causes a dramatic redistribution of CAL from the juxtanuclear region to the plasma membrane where the two molecules overlap. These data suggest that TC10 regulates both total and plasma membrane CFTR expression by interacting with CAL. The GTP-bound form of TC10 directs the trafficking of CFTR from the juxtanuclear region to the secretory pathway toward the plasma membrane, away from CAL-mediated degradation of CFTR in the lysosome. 相似文献
97.
98.
Force can shorten the lifetimes of macromolecular complexes (e.g., receptor-ligand bonds) by accelerating their dissociation. Perhaps paradoxical at first glance, bond lifetimes can also be prolonged by force. This counterintuitive behavior was named catch bonds, which is in contrast to the ordinary slip bonds that describe the intuitive behavior of lifetimes being shortened by force. Fifteen years after their theoretical proposal, catch bonds have finally been observed. In this article we review recently published data that have demonstrated catch bonds in the selectin system and suggested catch bonds in other systems, the theoretical models for their explanations, possible structural bases, their relation to flow-enhanced adhesion, and the potential biorheological relevance. 相似文献
99.
100.
Additives are known to improve the performance of organic photovoltaic devices based on mixtures of a low bandgap polymer, poly[2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b′]‐dithiophene)‐alt‐4,7‐(2,1,3‐benzothiadiazole)] (PCPDTBT) and [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM). The evolution of the morphology during the evaporation of the mixed solvent, which comprises additive and chlorobenzene (CB), is investigated by in‐situ grazing incidence X‐ray scattering, providing insight into the key role the additive plays in developing a multi‐length‐scale morphology. Provided the additive has a higher vapor pressure and a selective solubility for PCBM, as the host solvent (CB) evaporates, the mixture of the primary solvent and additive becomes less favorable for the PCPDTBT, while completely solubilizing the PCBM. During this process, the PCPDTBT first crystallizes into fibrils and then the PCBM, along with the remaining PCPDTBT, is deposited, forming a phase‐separated morphology comprising domains of pure, crystalline PCPDTBT fibrils and another domain that is a PCBM‐rich mixture with amorphous PCPDTBT. X‐ray/neutron scattering and diffraction methods, in combination with UV–vis absorption spectroscopy and transmission electron microscopy, are used to determine the crystallinity and phase separation of the resultant PCPDTBT/PCBM thin films processed with or without additives. Additional thermal annealing is carried out and found to change the packing of the PCPDTBT. The two factors, degree of crystallinity and degree of phase separation, control the multi‐length‐scale morphology of the thin films and significantly influence device performance. 相似文献