全文获取类型
收费全文 | 596篇 |
免费 | 16篇 |
专业分类
612篇 |
出版年
2021年 | 3篇 |
2019年 | 3篇 |
2016年 | 9篇 |
2015年 | 15篇 |
2014年 | 19篇 |
2013年 | 38篇 |
2012年 | 12篇 |
2011年 | 31篇 |
2010年 | 19篇 |
2009年 | 15篇 |
2008年 | 28篇 |
2007年 | 25篇 |
2006年 | 28篇 |
2005年 | 29篇 |
2004年 | 41篇 |
2003年 | 41篇 |
2002年 | 37篇 |
2001年 | 10篇 |
2000年 | 15篇 |
1999年 | 25篇 |
1998年 | 8篇 |
1997年 | 10篇 |
1996年 | 9篇 |
1995年 | 6篇 |
1994年 | 5篇 |
1993年 | 4篇 |
1992年 | 12篇 |
1991年 | 6篇 |
1990年 | 5篇 |
1989年 | 3篇 |
1988年 | 8篇 |
1987年 | 7篇 |
1986年 | 7篇 |
1985年 | 8篇 |
1984年 | 4篇 |
1983年 | 4篇 |
1981年 | 6篇 |
1980年 | 2篇 |
1979年 | 2篇 |
1978年 | 4篇 |
1977年 | 6篇 |
1976年 | 7篇 |
1975年 | 6篇 |
1974年 | 4篇 |
1973年 | 3篇 |
1972年 | 2篇 |
1971年 | 3篇 |
1969年 | 2篇 |
1968年 | 2篇 |
1967年 | 2篇 |
排序方式: 共有612条查询结果,搜索用时 15 毫秒
41.
Effects of catecholamines and their derivatives on gibberellicacid (GA)-induced lettuce hypocotyl elongation was studied,because catecholamines have a chemical structure similar tothe dihydroconiferyl alcohol that has been isolated from lettucecotyledons as a GA synergist. Epinephrine, norepinephrine, dopamineand 3,4-dihydroxymandelic acid synergistically enhanced thepromoting effect of GA on hypocotyl elongation. In contrast,metanephrine, normetanephrine, DOPA and 3-methoxy-4- hydroxymandelicacid did not enhance the GA effect. The action of catecholamineswas inhibited by trans-cinnamic acid which competitively inhibitedthe action of dihydroconiferyl alcohol; this suggests that thereceptor site for catecholamines is the same as that for dihydroconiferylalcohol. The basic ethyl acetate fraction from lettuce seedlingssynergistically enhanced the GA effect. TLC analyses of thisbasic ethyl acetate fraction revealed that the chromatographicarea corresponding to authentic catecholamines could enhancethe GA effect. From these results, a possible role for catecholamines in theregulation of lettuce hypocotyl elongation caused by GA wasposited, and is discussed here. (Received May 15, 1979; ) 相似文献
42.
Sites of restriction endonucleases were mapped on pOAD2, a plasmid harbored in Flavobacterium sp. KI72. The plasmid codes 6-aminohexanoic acid cyclic dimer hydrolase and 6-aminohexanoic acid linear oligomer hydrolase. pOAD2 (molecular weight: 28.8 megadaltons [Mdal]) had 6 HindIII and 5 EcoRI sites, which were located at 0, 8.4, 8.9, 11.1, 19.0 and 25.0 Mdal (for HindIII) and 3.3, 5.4, 20.4, 20.8, 22.6 Mdal (for EcoRI). A mutant which could not grow on 6-aminohexanoic acid cyclic dimer but grew on the linear dimer as the sole carbon and nitrogen source harbored a deletion plasmid pOAD21 derived from pOAD2. By comparing the restriction sites of these two plasmids, the deleted region was localized on which the 6-aminohexanoic acid cyclic dimer hydrolase was coded. 相似文献
43.
44.
45.
Takenaka M Nanayama K Isobe S Murata M 《Bioscience, biotechnology, and biochemistry》2006,70(1):172-177
There was an obvious decrease in caffeic acid derivatives during the boiling of cube-shaped blocks of sweet potatoes. They also decreased in a mixture of freeze-dried sweet-potato powder and water maintained at room temperature. Ascorbic acid prevented the decrease, supporting the occurrence of an enzyme reaction with polyphenol oxidase (PPO). 5-O-Caffeoylquinic acid (5-CQA, "3-O-caffeoylquinic acid" as a trivial name) and 3,5-di-O-caffeoylquinic acid (3,5-CQA), major phenolic compounds of sweet potato, did not change when they were separately heated in boiling water. When the mixture of powdered sweet potato and water was heated at 100 degrees C, there was only a negligible decrease in the total amount of phenolic compounds, and portions of 5-CQA and 3,5-CQA were found to be isomerized to 3-CQA, 4-CQA, 3,4-CQA, and 4,5-CQA. The content and composition of the phenolic compounds in sweet potatoes differed between fresh and long-stored ones, as did their response to heating. 相似文献
46.
Kensuke Miyamoto Yuko Mitani Kouichi Soga Junichi Ueda Kazuyuki Wakabayashi Takayuki Hoson Seiichiro Kamisaka Yoshio Masuda 《Physiologia plantarum》1997,101(1):38-44
When white light irradiation inhibits shoot growth in derooted pea ( Pisum sativum L. cv. Alaska) cuttings, it decreases tissue tension, a driving force for shoot growth, by making the cell wall of the inner tissues mechanically rigid. To elucidate the mechanism by which light affects the mechanical properties of the cell wall in the inner tissues, its effect on the chemical properties of the cell walls was studied by analyzing qualitatively and quantitatively cell wall polysaccharides in the epdidermis and inner tissue of pea epicotyls grown in both dark and light. The amount of polysaccharides per subhook in the cell walls of both tissues increased during a 4-h dark incubation. Light suppressed the increase in hemicellulosic (HC)-II and cellulosic polysaccharides in the inner tissues, while it did not affect the increase in other wall fractions in either the epidermal or subepidermal tissues. No light effect was observed on the neutral sugar compositions of pectin, HC-I or HC-II fractions in either of the tissues. Light increased the mass-average molecular mass of xyloglucan and rhamnoarabinogalactan in HC-II fractions in the inner tissues, while such an effect was not observed in the epidermis. These facts suggest that the light-induced decrease in the tissue tension in pea epicotyls is caused by an increase in the molecular size of xyloglucan, rhamnoarabinogalactan in the HC-II fraction and/or the suppression of the synthesis of HC-II and cellulosic polysaccharides in the inner tissues. 相似文献
47.
Carbohydrate binding underlies many cell recognition events. Here, we describe a multiplexed glyco-bead array method for determining the carbohydrate-binding specificities of plant lectins using a bead-based flow cytometric analysis. N-glycans including high mannose, hybrid, and complex types and O-glycans from glycoproteins were immobilized on multiplexed beads, and the specificities of 13 kinds of sugar chains were monitored within 2 h in a single reaction. This strategy is easy, rapid, reproducible, and suitable for small samples and allows the reliable and simultaneous elucidation of sugar-binding properties under identical conditions. 相似文献
48.
GnRH (gonadotropin-releasing hormone) is well-known as the central regulator of the reproductive system through its stimulation of gonadotropin release from the pituitary. Progress in studies on GnRH demonstrated that GnRH has both inhibitory and stimulatory effects on cell proliferation depending on the cell type, and the mechanisms of these effects have been intensively studied. However, even human GnRH receptors which mediate GnRH stimulation have not been completely identified. In the present study, we showed that the inhibitory and stimulatory effects of GnRH on colony-formation using four cell lines and have demonstrated that the inhibitory and stimulatory effects of GnRH exhibit distinctly different patterns of ligand sensitivity. This result strongly suggests that the two opposite effects of GnRH occur via different types of GnRH receptors, however expressional analyses of human GnRH receptors did not exhibit the significantly different pattern between negatively and positively responding cell lines. Then, in order to identify the GnRH receptors involved in the two opposite effects, effects of GnRH were analysed under the conditions that human GnRH receptors were knocked down by the technique of RNA interference. Consequently, it was found that human type II GnRH receptor mediates GnRH stimulation and its splice variant determines the direction of the response to GnRH. These results are the first clear evidence for the functionality of human type II GnRH receptor. Therefore our novel findings are quite noticeable and will greatly contribute to the studies on the mechanisms of the effects of GnRH on cell proliferation in the future. 相似文献
49.
50.
Purification and characterization of phosphoenolpyruvate phosphomutase from Pseudomonas gladioli B-1. 下载免费PDF全文
Phosphoenolpyruvate phosphomutase (PEPPM) catalyzes C-P bond formation by intramolecular rearrangement of phosphoenolpyruvate to phosphonopyruvate (PnPy). We purified PEPPM from a gram-negative bacterium, Pseudomonas gladioli B-1 isolated as a C-P compound producer. The equilibrium of this reaction favors the formation of the phosphate ester by cleaving the C-P bond of PnPy, but the C-P bond-forming reaction is physiologically significant. The C-P bond-forming activity of PEPPM was confirmed with a purified protein. The molecular mass of the native enzyme was estimated to be 263 and 220 kDa by gel filtration and polyacrylamide gel electrophoresis, respectively. A subunit molecular mass of 61 kDa was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that the native protein was a tetramer. The optimum pH and temperature were 7.5 to 8.0 and 40 degrees C, respectively. The Km value for PnPy was 19 +/- 3.5 microM, and the maximum initial velocity of the conversion of PnPy to phosphoenolpyruvate was 200 microM/s/mg. PEPPM was activated by the presence of the divalent metal ion, and the Km values were 3.5 +/- 1.4 microM for Mg2+, 16 +/- 5 nM for Mn2+, 3.0 +/- 1.5 microM for Zn2+, and 1.2 +/- 0.2 microM for Co2+. 相似文献