首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   359篇
  免费   26篇
  2024年   1篇
  2023年   1篇
  2022年   8篇
  2021年   12篇
  2020年   9篇
  2019年   3篇
  2018年   11篇
  2017年   9篇
  2016年   15篇
  2015年   28篇
  2014年   22篇
  2013年   20篇
  2012年   34篇
  2011年   42篇
  2010年   29篇
  2009年   20篇
  2008年   20篇
  2007年   29篇
  2006年   13篇
  2005年   14篇
  2004年   8篇
  2003年   10篇
  2002年   13篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有385条查询结果,搜索用时 15 毫秒
61.
Inspiratory muscle weakness in patients with COPD is of major clinical relevance. For instance, maximum inspiratory pressure generation is an independent determinant of survival in severe COPD. Traditionally, inspiratory muscle weakness has been ascribed to hyperinflation-induced diaphragm shortening. However, more recently, invasive evaluation of diaphragm contractile function, structure, and biochemistry demonstrated that cellular and molecular alterations occur, of which several can be considered pathologic of nature. Whereas the fiber type shift towards oxidative type I fibers in COPD diaphragm is regarded beneficial, rendering the overloaded diaphragm more resistant to fatigue, the reduction of diaphragm fiber force generation in vitro likely contributes to diaphragm weakness. The reduced diaphragm force generation at single fiber level is associated with loss of myosin content in these fibers. Moreover, the diaphragm in COPD is exposed to oxidative stress and sarcomeric injury. This review postulates that the oxidative stress and sarcomeric injury activate proteolytic machinery, leading to contractile protein wasting and, consequently, loss of force generating capacity of diaphragm fibers in patients with COPD. Interestingly, several of these presumed pathologic alterations are already present early in the course of the disease (GOLD I/II), although these patients appear not limited in their daily life activities. Treatment of diaphragm dysfunction in COPD is complex since its etiology is unclear, but recent findings indicate the ubiquitin-proteasome pathway as a prime target to attenuate diaphragm wasting in COPD.  相似文献   
62.
Dot1 is an evolutionarily conserved histone methyltransferase specific for lysine 79 of histone H3 (H3K79). In Saccharomyces cerevisiae, Dot1-mediated H3K79 methylation is associated with telomere silencing, meiotic checkpoint control, and DNA damage response. The biological function of H3K79 methylation in mammals, however, remains poorly understood. Using gene targeting, we generated mice deficient for Dot1L, the murine Dot1 homologue. Dot1L-deficient embryos show multiple developmental abnormalities, including growth impairment, angiogenesis defects in the yolk sac, and cardiac dilation, and die between 9.5 and 10.5 days post coitum. To gain insights into the cellular function of Dot1L, we derived embryonic stem (ES) cells from Dot1L mutant blastocysts. Dot1L-deficient ES cells show global loss of H3K79 methylation as well as reduced levels of heterochromatic marks (H3K9 di-methylation and H4K20 tri-methylation) at centromeres and telomeres. These changes are accompanied by aneuploidy, telomere elongation, and proliferation defects. Taken together, these results indicate that Dot1L and H3K79 methylation play important roles in heterochromatin formation and in embryonic development.  相似文献   
63.

Background

Autophagy has been shown recently to play an important role in the intracellular survival of several pathogenic bacteria. In this study, we investigated the effect of a novel small-molecule autophagy-inducing agent, AR-12, on the survival of Francisella tularensis, the causative bacterium of tularemia in humans and a potential bioterrorism agent, in macrophages.

Methods and results

Our results show that AR-12 induces autophagy in THP-1 macrophages, as indicated by increased autophagosome formation, and potently inhibits the intracellular survival of F. tularensis (type A strain, Schu S4) and F. novicida in macrophages in association with increased bacterial co-localization with autophagosomes. The effect of AR-12 on intracellular F. novicida was fully reversed in the presence of the autophagy inhibitor, 3-methyl adenine or the lysosome inhibitor, chloroquine. Intracellular F. novicida were not susceptible to the inhibitory activity of AR-12 added at 12 h post-infection in THP-1 macrophages, and this lack of susceptibility was independent of the intracellular location of bacteria.

Conclusion

Together, AR-12 represents a proof-of-principle that intracellular F. tularensis can be eradicated by small-molecule agents that target innate immunity.  相似文献   
64.
65.
Extracellular lipase from Bacillus coagulans BTS-3 was immobilized on (3 Å × 1.5 mm) molecular sieve. The molecular sieve showed approximately 68.48% binding efficiency for lipase (specific activity 55 IU mg?1). The immobilized enzyme achieved approx 90% conversion of acetic acid and 4-nitrophenol (100 mM each) into 4-nitrophenyl acetate in n-heptane at 65°C in 3 h. When alkane of C-chain length other than n-heptane was used as the organic solvent, the conversion of 4-nitrophenol and acetic acid was found to decrease. About 88.6% conversion of the reactants into ester was achieved when reactants were used at molar ratio of 1:1. The immobilized lipase brought about conversion of approximately 58% for esterification of 4-nitrophenol and acetic acid into 4-nitrophenyl acetate at a temperature of 65°C after reuse for 5 cycles.  相似文献   
66.
67.
68.
69.
The activity of telomerase in cancer cells is tightly regulated by numerous proteins including DNA replication factors. However, it is unclear how replication proteins regulate telomerase action in higher eukaryotic cells. Previously we have demonstrated that the multifunctional DNA replication and repair protein flap endonuclease 1 (FEN1) is in complex with telomerase and may regulate telomerase activity in mammalian cells. In this study, we further analyzed the nature of this association. Our results show that FEN1 and telomerase association occurs throughout the S phase, with the maximum association in the mid S phase. We further mapped the physical domains in FEN1 required for this association and found that the C-terminus and the nuclease domain of FEN1 are involved in this interaction, whereas the PCNA binding ability of FEN1 is dispensable for the interaction. These results provide insights into the nature of possible protein–protein associations that telomerase participates in for maintaining functional telomeres.  相似文献   
70.
Ternary Cu(II) complexes [Cu(II)(saltrp)(B)] (1,2), (saltrp = salicylidene tryptophan, B = 1,10 phenathroline (1) or 2,2′ bipyridine (2)) were synthesized and characterized. Complex 2 was structurally characterized by single crystal X-ray crystallography. The molecular structure shows a distorted square pyramidal coordination geometry (CuN3O2) in which the ONO donor Schiff base is bonded to the Cu(II) in the basal plane. The N,N donor heterocyclic base displays an axial-equatorial binding mode. CT-DNA binding studies revealed that the complexes show good binding propensity (Intrinsic binding constant, Kb = 3.32 × 105 M−1 for 1 and Kb = 3.10 × 105 M−1 for 2). The catalytic role of these complexes in the oxidative and hydrolytic cleavage of DNA was studied in detail. Complex 1 binds and cleaves DNA more efficiently as compared to 2. From the kinetic experiments, rate constants for the hydrolysis of phosphodiester bond of DNA backbone were determined as 1.94 h−1 and 1.05 h−1 for 1 and 2 respectively. It amounts to (2.93-5.41) × 107 fold rate enhancement compared to uncatalyzed double stranded DNA, which is impressive as compared to related Cu(II) Schiff base complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号