首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39012篇
  免费   2984篇
  国内免费   2919篇
  44915篇
  2024年   98篇
  2023年   514篇
  2022年   1183篇
  2021年   2162篇
  2020年   1358篇
  2019年   1717篇
  2018年   1728篇
  2017年   1177篇
  2016年   1651篇
  2015年   2400篇
  2014年   2830篇
  2013年   3073篇
  2012年   3579篇
  2011年   3167篇
  2010年   1987篇
  2009年   1616篇
  2008年   1968篇
  2007年   1721篇
  2006年   1589篇
  2005年   1287篇
  2004年   1054篇
  2003年   909篇
  2002年   758篇
  2001年   664篇
  2000年   588篇
  1999年   628篇
  1998年   351篇
  1997年   364篇
  1996年   344篇
  1995年   317篇
  1994年   332篇
  1993年   263篇
  1992年   311篇
  1991年   242篇
  1990年   213篇
  1989年   189篇
  1988年   127篇
  1987年   101篇
  1986年   92篇
  1985年   86篇
  1984年   59篇
  1983年   53篇
  1982年   34篇
  1981年   9篇
  1980年   9篇
  1979年   11篇
  1976年   1篇
  1965年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
β-Mannanase can randomly hydrolyze the (1→4)-β-d-mannosidic linkages in mannans, galactomannans and glucomannans, yielding manno-oligosaccharides. In this study, the β-mannanase (MAN) from Bacillus subtilis B10-02 was overexpressed successfully in B. subtilis 168 as a hexa-histidine tagged, secreted protein. The recombinant enzyme BsMAN6H was not stable under acidic conditions, which restricts its use in food and feed industry. We aimed to improve the acid stability of BsMAN6H by changing several surface-exposed amino acid residues to acidic or neutral ones. Among the mutations, the His54Asp resulted in a shift in the optimal pH from 6.5 to 5.5. Accordingly, the acid stability was improved by a factor of a negative potential on the structure surface around the mutated site. Furthermore, the H54D variant showed the enzyme activity up to 3207.82 U/mL in bioreactors using the cheap Kojac powder as substrate. As a result, a bacterial β-mannanase was produced efficiently with increased acid stability, improving its applicability in the animal feed industry.  相似文献   
992.
  相似文献   
993.
Numerous liver diseases are associated with extensive oxidative tissue damage. It is well established that Wnt/β-catenin signaling directs multiple hepatocellular processes, including development, proliferation, regeneration, nutrient homeostasis, and carcinogenesis. It remains unexplored whether Wnt/β-catenin signaling provides hepatocyte protection against hepatotoxin-induced apoptosis. Conditional, liver-specific β-catenin knockdown (KD) mice and their wild-type littermates were challenged by feeding with a hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet to induce chronic oxidative liver injury. Following the DDC diet, mice with β-catenin-deficient hepatocytes demonstrate increased liver injury, indicating an important role of β-catenin signaling for liver protection against oxidative stress. This finding was further confirmed in AML12 hepatocytes with β-catenin signaling manipulation in vitro using paraquat, a known oxidative stress inducer. Immunofluorescence staining revealed an intense nuclear FoxO3 staining in β-catenin-deficient livers, suggesting active FoxO3 signaling in response to DDC-induced liver injury when compared with wild-type controls. Consistently, FoxO3 target genes p27 and Bim were significantly induced in β-catenin KD livers. Conversely, SGK1, a β-catenin target gene, was significantly impaired in β-catenin KD hepatocytes that failed to inactivate FoxO3. Furthermore, shRNA-mediated deletion of FoxO3 increased hepatocyte resistance to oxidative stress-induced apoptosis, confirming a proapoptotic role of FoxO3 in the stressed liver. Our findings suggest that Wnt/β-catenin signaling is required for hepatocyte protection against oxidative stress-induced apoptosis. The inhibition of FoxO through its phosphorylation by β-catenin-induced SGK1 expression reduces the apoptotic function of FoxO3, resulting in increased hepatocyte survival. These findings have relevance for future therapies directed at hepatocyte protection, regeneration, and anti-cancer treatment.  相似文献   
994.
995.

Purpose

To investigate the changes in dry eye symptoms and clinical signs and corneal sensitivity after small incision lenticule extraction (SMILE) and femtosecond LASIK (femto-LASIK).

Design

Prospective, non-randomized comparative study.

Methods

The study included a total of 71 eyes of 71 patients; the SMILE group comprised 38 eyes of 38 patients, and the femto-LASIK group comprised 33 eyes of 33 patients. Ocular Surface Disease Index (OSDI), Tear film breakup time (TBUT), the Schirmer test without anesthesia (S1T), corneal fluorescein staining, and central corneal sensation were evaluated before surgery and at 1 week, 1 month, 3 months, and 6 months after surgery.

Results

OSDI scores in both groups were increased immediately and returned to preoperative level at 1 month after surgeries. The TBUT values in both groups were reduced after surgeries relative to their preoperative scores. Patients in SMILE group were less likely to have corneal staining compared with those in the femto-LASIK group ([odds ratio] OR = 0.50, 95% [confidence interval] CI 0.28 to 0.93, P = 0.03). Central corneal sensitivity was decreased at all postoperative time points in both groups. However, the central corneal sensation scores in the SMILE group were greater than that in the femto-LASIK group at all of the postoperative time points (all P<0.05).

Conclusions

SMILE surgeries resulted in a short-term increase in dry eye symptoms, tear film instability, and loss of corneal sensitivity. Furthermore, SMILE surgeries have superiority over femto-LASIK in lower risk of postoperative corneal staining and less reduction of corneal sensation.  相似文献   
996.

Background

A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12) may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process.

Methodology/Principal Findings

The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF) and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process.

Conclusions/Significance

CXCR4 inhibition by drugs such as MSX-122 may alleviate potential radiation-induced lung injury, presenting future therapeutic opportunities for patients requiring chest irradiation.  相似文献   
997.
A DNA encoding the 6-kDa early secretory antigenic target (ESAT-6) of Mycobacterium tuberculosis was inserted into a bacterial expression vector of pQE30 resulting in a 6x His-esat-6 fusion gene construction. This plasmid was transformed into Escherichia coli strain M15 and effectively expressed. The expressed fusion protein was found almost entirely in the insoluble form (inclusion bodies) in cell lysate. The inclusion bodies were solubilized with 8M urea or 6M guanidine-hydrochloride at pH 7.4, and the recombinant protein was purified by Ni-NTA column. The purified fusion protein was refolded by dialysis with a gradient of decreasing concentration of urea or guanidine hydrochloride or by the size exclusion protein refolding system. The yield of refolded protein obtained from urea dialysis was 20 times higher than that from guanidine-hydrochloride. Sixty-six percent of recombinant ESAT-6 was successfully refolded as monomer protein by urea gradient dialysis, while 69% of recombinant ESAT-6 was successfully refolded as monomer protein by using Sephadex G-200 size exclusion column. These results indicate that urea is more suitable than guanidine-hydrochloride in extracting and refolding the protein. Between the urea gradient dialysis and the size exclusion protein refolding system, the yield of the monomer protein was almost the same, but the size exclusion protein refolding system needs less time and reagents.  相似文献   
998.
999.
Yu Z  Liu L  Yu X  Chi J  Han H  Liu Y  He W  Sun Q  Gao J  Xu D 《Journal of biomolecular screening》2010,15(10):1260-1267
In this work, the authors developed a new screening approach using multiplexed immunization and immunogen array analysis to improve the efficiency of antibody screening for high-throughput antibody generation. The immunogen array is based on a 96-well format in which different immunogens and negative as well as positive controls are immobilized in each well, thus making it possible to screen hundreds of antibody candidates simultaneously. To demonstrate this approach, a model of 4 mixed immunogens immunization was employed. In total, 675 antibody candidates were screened before and after established antibody hybridomas in parallel with immunogen arrays and enzyme-linked immunosorbent assay. The signal intensity, specificity, and cross-reactivity of produced antibody candidates were analyzed using a hierarchical cluster algorithm to track the characteristics of antibody candidates during antibody generation, which might reduce the number of false-positive and false-negative binding of antibodies. Moreover, 4 monoclonal antibodies that were produced successfully recognized their corresponding target antigens.  相似文献   
1000.
The objective of this study was to identify genetic polymorphisms of the CACNA2D1 gene and to analyze associations between SNPs and carcass and meat quality traits in cattle. Through PCR-RFLP and DNA sequencing methods, a new allelic variant corresponding to the A → G mutation (aspartic to glycine amino acid replacement) of the bovine CACNA2D1 gene was detected. Two alleles and three genotypes (AA, AG, and GG) were defined. Genetic character indicated that the A526745G locus showed moderate polymorphism and was in Hardy–Weinberg equilibrium. Gene-specific SNP marker association analysis showed that the A526745G mutant was significantly associated with carcass weight, dressing percentage, meat percentage, and backfat thickness. The results add new evidence that CACNA2D1 is an important candidate gene for the selection of carcass and meat quality traits in the cattle industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号