全文获取类型
收费全文 | 246篇 |
免费 | 12篇 |
专业分类
258篇 |
出版年
2023年 | 2篇 |
2021年 | 2篇 |
2020年 | 5篇 |
2019年 | 2篇 |
2018年 | 2篇 |
2017年 | 6篇 |
2016年 | 6篇 |
2015年 | 12篇 |
2014年 | 6篇 |
2013年 | 20篇 |
2012年 | 10篇 |
2011年 | 16篇 |
2010年 | 9篇 |
2009年 | 9篇 |
2008年 | 11篇 |
2007年 | 15篇 |
2006年 | 17篇 |
2005年 | 15篇 |
2004年 | 13篇 |
2003年 | 11篇 |
2002年 | 10篇 |
2001年 | 2篇 |
2000年 | 2篇 |
1999年 | 2篇 |
1998年 | 2篇 |
1991年 | 2篇 |
1990年 | 3篇 |
1988年 | 2篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1985年 | 4篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 3篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1974年 | 2篇 |
1973年 | 2篇 |
1972年 | 1篇 |
1971年 | 2篇 |
1970年 | 3篇 |
1968年 | 1篇 |
1967年 | 2篇 |
1966年 | 5篇 |
1965年 | 4篇 |
排序方式: 共有258条查询结果,搜索用时 15 毫秒
221.
Thin films of a biocompatible and nonbiofouling poly(oligo(ethylene glycol) methacrylate) ( pOEGMA) with various thicknesses were formed on gold and Si/SiO 2 substrates by a combination of the formation of self-assembled monolayers (SAMs) terminating in bromoester-an initiator of atom transfer radical polymerization (ATRP)-and surface-initiated ATRP. After the formation of the pOEGMA films, terminal hydroxyl groups of side chains divergent from the methacrylate backbones were activated with N, N'-disuccinimidyl carbonate (DSC), and the DSC-activated pOEGMA films were reacted with (+)-biotinyl-3,6,9-trioxaundecanediamine (Biotin-NH 2) to form biotinylated pOEGMA films. By surface plasmon resonance experiments with the target protein (streptavidin) and model proteins (fibrinogen and lysozyme), we verified that the resulting films showed the enhanced signal-to-noise ratio ( approximately 10-fold enhancement) for the biospecific binding of streptavidin compared with the biotinylated substrate prepared from carboxylic acid-terminated SAMs. Quartz crystal microbalance measurements were also carried out to obtain the surface coverage of streptavidin and fibrinogen adsorbed onto the biotinylated pOEGMA films with various thicknesses and to investigate the effect of film thicknesses on the biospecific binding of streptavidin. Both the binding capacity of streptavidin and the signal-to-noise ratio of streptavidin/fibrinogen were found to be saturated at the 20 nm thick pOEGMA film. In addition, to demonstrate a wide applicability of the pOEGMA films, we constructed micropatterns of streptavidin and cells by microcontact-printing biotin-NH 2 and poly- l-lysine onto the DSC-activated pOEGMA films, respectively. 相似文献
222.
Chong Shik Chin 《Inorganica chimica acta》2004,357(10):3064-3070
Phosphorus-carbon bond is formed via: (i) the apparent HCCH insertion into Ir-P bond to produce Ir-CHCH-PPh3 group and (ii) the activation of the ring-methyl group of the coordinated Cp* (C5Me5 −) to produce Ir(η5-C5Me4CH2-PPh3) group from reactions of iridium(III)-Cp* complexes, [Cp*IrL3]n+ (n=1, 2); Cp*=C5Me5 −; L3=Cl(PPh3)2 (3), (CH3CN)3 (5). The following new P-C bond containing iridium(III) complexes have been prepared: [Cp*Ir(-CHCH-PPh3)Cl(PPh3)]+ (4) from 3 with HCCH; [Ir(η5-C5Me4CH2-PPh3)(H)(PPh3)2]2+ (6) from 5 with PPh3; [Cp*Ir(-CHCH-PPh3)2(PPh3)]2+ (7) from 5 with HCCH and PPh3; [Ir(η5-C5Me4CH2-PPh3)(-CHCH-PPh3)Cl(PPh3)]2+ (8) from [Ir(η5-C5Me4CH2-PPh3)(Cl)(PPh3)2]2+ (6-Cl) with HCCH; [Ir(η5-C5Me3(1,3-CH2-PPh3)2(H)(PPh3)2)]3+ (10) from [Ir(η5-C5Me4CH2-PPh3)(NCCH3)2(PPh3)]3+ (9) with PPh3; [Ir(η5-C5Me4CH2-PPh3)(-CHCH-PPh3)2(PPh3)]3+ (11) from 9 with HCCH and PPh3. 相似文献
223.
Park Y Zhang Z Laremore TN Li B Sim JS Im AR Ahn MY Kim YS Linhardt RJ 《Glycoconjugate journal》2008,25(9):863-877
Acharan sulfate content from African giant snail (Achatina fulica) was compared in eggs and snails of different ages. Acharan sulfate was not found in egg. Acharan sulfate disaccharide →4)-α-d-GlcNpAc (1→4)-α-l-IdoAp2S(1→, analyzed by SAX (strong-anion exchange)–HPLC was observed soon after hatching and increases as the snails grow.
Monosaccharide compositional analysis showed that mole % of glucosamine, a major monosaccharide of acharan sulfate, increased
with age while mole % of galactose decreased with age. These results suggest that galactans represent a major energy source
during development, while acharan sulfate appearing immediately after hatching, is essential for the snail growth. The structures
of neutral N-glycans released from eggs by peptide N-glycosidase F (PNGase F), were next elucidated using ESI-MS/MS, MALDI-MS/MS, enzyme digestion, and monosaccharide composition
analysis. Three types of neutral N-glycan structures were observed, truncated (Hex2–4-HexNAc2), high mannose (Hex5–9-HexNAc2), and complex (Hex3-HexNAc2–10) types. None showed core fucosylation. 相似文献
224.
Hong Shik Yun Eun-Hee Hong Su-Jae Lee Jeong-Hwa Baek Chang-Woo Lee Ji-Hye Yim Hong-Duck Um Sang-Gu Hwang 《Biochemical and biophysical research communications》2013
Biomarkers based on functional signaling have the potential to provide greater insight into the pathogenesis of cancer and may offer additional targets for anticancer therapeutics. Here, we identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistance-related gene and characterized the molecular mechanism by which its encoded protein regulates the radio- and chemoresistant phenotype of lung cancer-derived A549 cells. Knockdown of HRP-3 promoted apoptosis of A549 cells and potentiated the apoptosis-inducing action of radio- and chemotherapy. This increase in apoptosis was associated with a substantial generation of reactive oxygen species (ROS) that was attributable to inhibition of the Nrf2/HO-1 antioxidant pathway and resulted in enhanced ROS-dependent p53 activation and p53-dependent expression of PUMA (p53 upregulated modulator of apoptosis). Therefore, the HRP-3/Nrf2/HO-1/ROS/p53/PUMA cascade is an essential feature of the A549 cell phenotype and a potential radiotherapy target, extending the range of targets in multimodal therapies against lung cancer. 相似文献
225.
Myeongkwan Song Sekyung Kim Hyun Shik Yun Soonjo Kwon 《Biotechnology and Bioprocess Engineering》2017,22(5):653-658
The inflammatory response is an indispensable bodily reaction, but excessive inflammation is known to result in diseases such as atopic disease, bronchitis, rheumatoid arthritis, and inflammatory bowel disease. Ceramide is the basic structure of sphingolipids and ceramides have been industrially used in functional cosmetics as anti-aging agents, as well as for moisturizing skin and calming skin irritation. It also has been recently used in medicinal fields as an anti-inflammatory as well as for atopic and skin wound healing, and for skin barrier restoration. In this study, we used genetically modified Saccharomyces cerevisiae to produce ceramides. Ceramide mixture was produced by gene manipulation that amplifies the original yeast gene. To investigate their anti-inflammatory effects, nitric oxide (NO) concentrations in cell culture supernatant were measured by using the Griess reaction and the expression levels of pro-inflammatory markers, cyclooxygenase-2 (COX-2) and tumor necrosis factor-α (TNF-α), were determined by using qRT-PCR. When cells were treated with the ceramide mixture, cell viability was not reduced, but NO production was inhibited. In addition, expressions of COX-2 and TNF-α were inhibited. Based on these results, we conclude that ceramide biosynthesized from recombinant yeast can effectively reduce the expression of inflammatory enzymes and cytokines. We expected that ceramides biosynthesized in genetically modified yeast is a novel preventive or therapeutic agent for inflammatory diseases without the risk of foreign gene introduction. 相似文献
226.
227.
The structures of a series of large oligosaccharides derived from acharan sulfate were characterized. Acharan sulfate is an unusual glycosaminoglycan isolated from the giant African snail, Achatina fulica. Oligosaccharides from decasaccharide to hexadecasaccharide were enzymatically prepared using heparin lyase II and purified. Capillary electrophoresis and gel electrophoresis confirmed the purity of these oligosaccharides. Their structures, determined by ESI-MS and NMR, were consistent with the major repeating sequence in acharan sulfate, -->4)-alpha-d-GlcN(p)Ac-(1-->4)-alpha-l-IdoA(p)2S-(1-->, terminated by 4-linked alpha-d-GlcN(p)Ac residue at the reducing end and by 4,5-unsaturated pyranosyluronic acid 2-sulfate at the non-reducing end. 相似文献
228.
Lim MJ Choi KJ Ding Y Kim JH Kim BS Kim YH Lee J Choe W Kang I Ha J Yoon KS Kim SS 《Molecular endocrinology (Baltimore, Md.)》2007,21(9):2282-2293
Although the RhoA/Rho kinase (RhoA/ROK) pathway has been extensively investigated, its roles and downstream signaling pathways are still not well understood in myogenic processes. Therefore, we examined the effects of RhoA/ROK on myogenic processes and their signaling molecules using H9c2 and C2C12 cells. Increases in RhoA/ROK activities and serine phosphorylation levels of insulin receptor substrate (IRS)-1 (Ser307 and Ser636/639) and IRS-2 were found in proliferating myoblasts, whereas IRS-1/2 tyrosine phosphorylation and phosphatidylinositol (PI) 3-kinase activity increased during the differentiation process. ROK strongly bound to IRS-1/2 in proliferation medium but dissociated from them in differentiation medium (DM). ROK inactivation by a ROK inhibitor, Y27632, or a dominant-negative ROK, decreased IRS-1/2 serine phosphorylation with increases in IRS-1/2 tyrosine phosphorylation and PI 3-kinase activity, which led to muscle differentiation even in proliferation medium. Inhibition of ROK also enhanced differentiation in DM. ROK activation by a constitutive active ROK blocked muscle differentiation with the increased IRS-1/2 serine phosphorylation, followed by decreases in IRS-1/2 tyrosine phosphorylation and PI 3-kinase activity in DM. Interestingly, fibroblast growth factor-2 added to DM also blocked muscle differentiation through RhoA/ROK activation. Fibroblast growth factor-2 blockage of muscle differentiation was reversed by Y27632. Collectively, these results suggest that the RhoA/ROK pathway blocks muscle differentiation by phosphorylating IRS proteins at serine residues, resulting in the decreased IRS-1/2 tyrosine phosphorylation and PI 3-kinase activity. The absence of the inhibitory effects of RhoA/ROK in DM due to low concentrations of myogenic inhibitory growth factors seems to allow IRS-1/2 tyrosine phosphorylation, which stimulates muscle differentiation via transducing normal myogenic signaling. 相似文献
229.
A brief critical review of literature shows that many authors still follow a classical theory that the respiration control is performed by feedback (by deviation of PCO2, PO2 and pH in blood). This point of view does not account for the exercise hyperpnea. The present paper contains the various data and considerations which show that respiration during muscular exercise is controlled by a combined self-learning system. The system is based on both disturbance (open-loop) control and feedback control. The signals of disturbance (of central origin and from receptors of exercising muscles) cause the increase of respiration during exercise. The signals of deviations (from peripheral and central chemoreceptors) correct the response of respiratory centre to disturbance signals. The self-learning takes place by the formation of conditioned reflexes that ensures the control of respiration (the stability of gaseous composition of blood during exercise). 相似文献
230.