首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3314篇
  免费   212篇
  国内免费   168篇
  3694篇
  2024年   15篇
  2023年   67篇
  2022年   152篇
  2021年   260篇
  2020年   176篇
  2019年   227篇
  2018年   206篇
  2017年   140篇
  2016年   208篇
  2015年   264篇
  2014年   347篇
  2013年   353篇
  2012年   330篇
  2011年   297篇
  2010年   152篇
  2009年   115篇
  2008年   116篇
  2007年   97篇
  2006年   54篇
  2005年   43篇
  2004年   25篇
  2003年   13篇
  2002年   12篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1981年   1篇
  1959年   2篇
排序方式: 共有3694条查询结果,搜索用时 15 毫秒
81.
Li  Yanteng  Lv  Wenying  Cheng  Gang  Wang  Shuwei  Liu  Bangxin  Zhao  Hulin  Wang  Hongwei  Zhang  Leiming  Dong  Chao  Zhang  Jianning 《Neurochemical research》2020,45(11):2723-2731
Neurochemical Research - Blast-induced traumatic brain injury (bTBI) is a leading cause of disability and mortality in soldiers during the conflicts in Iraq and Afghanistan. Although substantial...  相似文献   
82.
Ming  Nan  Ma  Nana  Jiao  Baozhen  Lv  Wei  Meng  Qingwei 《Plant Molecular Biology Reporter》2020,38(1):75-94

In plants, C2H2-type zinc finger proteins play important roles in multiple processes, including plant growth and development, as well as biotic and abiotic responses. In the present study, based on the presence of the C2H2 domain (CX2~4CX3FX5LX2HX3~5H), 112 C2H2-type zinc finger proteins were predicted in tomato. Through gene and protein structures analyses and phylogenetic analysis, the 112 C2H2-type zinc finger proteins were divided into five subfamilies. Members of the same subfamily shared similarities in gene and protein structures, while members of different subfamilies contained different numbers of the C2H2 domain. The tissue expression pattern analysis showed that 24 C2H2-type zinc finger proteins are constitutively expressed in all tissues, indicating that they may play important roles in the growth and development of all tissues. In addition, under chilling (4 °C), heat (42 °C), high salinity (200 Mm NaCl), and osmotic (20% PEG) stresses, members of C2H2-type zinc finger family were induced to varying degrees, which suggested that these genes were involved in multiple abiotic stress responses. This study will provide theoretical basis for further research of C2H2-type zinc finger proteins in tomato.

  相似文献   
83.
Zuo  Cunwu  Liu  He  Lv  Qianqian  Chen  Zhongjian  Tian  Yuzhen  Mao  Juan  Chu  Mingyu  Ma  Zonghuan  An  Zeshan  Chen  Baihong 《Plant Molecular Biology Reporter》2020,38(1):14-24
Plant Molecular Biology Reporter - Cysteine-rich receptor-like kinases (CRKs) took crucial roles in plant cell growth and development, as well as environmental adaption. Apple (Malus domestica) had...  相似文献   
84.
85.
We report a case of mucocutaneous phaeohyphomycosis caused by Exophiala spinifera. Crusty plaques and nodules were major clinical features. Histological examination revealed brown yeast-like cells and hyphae. Mycological and molecular data identified E. spinifera as etiologic agent. Oral itraconazole was effective, which was in accordance with the results of in vitro susceptibility testing. We speculated that her pregnancy may play a role of risk factor in the infection by E. spinifera.  相似文献   
86.
The increasing incidence of hospital acquired infections caused by antibiotic resistant pathogens has led to an increase in morbidity and mortality, finding alternative antibiotics unaffected by resistance mechanisms is fundamentally important for treating this problem. Naturally occurring proteins usually carry short peptide fragments that exhibit noticeable biological activity against a wide variety of microorganisms such as bacteria, fungi and protozoa. Traditional discovery of such antimicrobially active fragments (i.e. antimicrobial peptides, AMPs) from protein repertoire is either random or led by chance. Here, we report the use of a rational protocol that combines in silico prediction and in vitro assay to identify potential AMPs with high activity and low toxicity from the entire human genome. In the procedure, a three-step inference strategy is first proposed to perform genome-wide analysis to infer AMPs in a high-throughput manner. By employing this strategy we are able to screen more than one million peptide candidates generated from various human proteins, from which we identify four highly promising samples, and subsequently their antibacterial activity on five strains as well as cytotoxicity on human myoblasts are tested experimentally. As a consequence, two high-activity, low-toxicity peptides are discovered, which could be used as the structural basis to further develop new antibiotics. In addition, from 1491 known AMPs we also derive a quantitative measure called antibacterial propensity index (API) for 20 naturally occurring amino acids, which shows a significant allometric correlation with the theoretical minimal inhibitory concentration of putative peptides against Gram-positive and Gram-negative bacteria. This study may provide a proof-of-concept paradigm for the genome-wide discovery of novel antimicrobial peptides by using a combination of in silico and in vitro analyses.  相似文献   
87.
Chromatin modifications have been comprehensively illustrated to play important roles in gene regulation and cell diversity in recent years. Given the rapid accumulation of genome-wide chromatin modification maps across multiple cell types, there is an urgent need for computational methods to analyze multiple maps to reveal combinatorial modification patterns and define functional DNA elements, especially those are specific to cell types or tissues. In this current study, we developed a computational method using differential chromatin modification analysis (dCMA) to identify cell-type-specific genomic regions with distinctive chromatin modifications. We then apply this method to a public data set with modification profiles of nine marks for nine cell types to evaluate its effectiveness. We found cell-type-specific elements unique to each cell type investigated. These unique features show significant cell-type-specific biological relevance and tend to be located within functional regulatory elements. These results demonstrate the power of a differential comparative epigenomic strategy in deciphering the human genome and characterizing cell specificity.  相似文献   
88.
High-throughput bisulfite sequencing is widely used to measure cytosine methylation at single-base resolution in eukaryotes. It permits systems-level analysis of genomic methylation patterns associated with gene expression and chromatin structure. However, methods for large-scale identification of methylation patterns from bisulfite sequencing are lacking. We developed a comprehensive tool, CpG_MPs, for identification and analysis of the methylation patterns of genomic regions from bisulfite sequencing data. CpG_MPs first normalizes bisulfite sequencing reads into methylation level of CpGs. Then it identifies unmethylated and methylated regions using the methylation status of neighboring CpGs by hotspot extension algorithm without knowledge of pre-defined regions. Furthermore, the conservatively and differentially methylated regions across paired or multiple samples (cells or tissues) are identified by combining a combinatorial algorithm with Shannon entropy. CpG_MPs identified large amounts of genomic regions with different methylation patterns across five human bisulfite sequencing data during cellular differentiation. Different sequence features and significantly cell-specific methylation patterns were observed. These potentially functional regions form candidate regions for functional analysis of DNA methylation during cellular differentiation. CpG_MPs is the first user-friendly tool for identifying methylation patterns of genomic regions from bisulfite sequencing data, permitting further investigation of the biological functions of genome-scale methylation patterns.  相似文献   
89.
VKORC1 genetic polymorphisms affect warfarin dose response, aortic calcification, and the susceptibility of coronary artery disease as shown in our previous study. Little is known regarding the association of VKORC1 polymorphisms with coronary artery calcification (CAC) and the role of CAC in the association with coronary artery disease (CAD). Due to a natural haplotype block in the VKORC1 gene in Chinese, polymorphism rs2359612 was analyzed in a case–control study and a prospective study. The case–control study included 464 CAD patients with non-calcified plaque (NCP), 562 CAD patients with mixed calcified plaque (MCP), 492 subjects with calcified plaque (CP), and 521 controls. The rs2359612C was only associated with increased risk of MCP, the CAD in the presence of CAC; the odds ratio was 1.397 (95 % CI 1.008–1.937, P < 0.05), which was replicated in the second independent population. On the contrary, a negative correlation was observed between rs2359612 and log-transformed Agatston score, and rs2359612 was negatively associated with the number of calcified vessels. Moreover, in a prospective study including 849 CAD patients undergoing revascularization, rs2359612C predicted a higher incidence of cardiovascular events in MCP subgroup; the relative risk was 1.435 (95 % CI 1.008–2.041, P = 0.045), which was not observed in the NCP subgroup. We conclude that the rs2359612C was associated with a higher risk of CAD in the presence of CAC and a higher incidence of cardiovascular events in CAD patients with CAC, but a lower coronary calcification. VKORC1 polymorphisms may be associated with the endophenotype of CAD, calcification-related atherosclerosis.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号