首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   357篇
  免费   117篇
  2022年   5篇
  2021年   8篇
  2020年   3篇
  2019年   10篇
  2018年   17篇
  2017年   4篇
  2016年   8篇
  2015年   20篇
  2014年   12篇
  2013年   22篇
  2012年   25篇
  2011年   25篇
  2010年   16篇
  2009年   18篇
  2008年   22篇
  2007年   21篇
  2006年   15篇
  2005年   14篇
  2004年   23篇
  2003年   16篇
  2002年   14篇
  2001年   4篇
  2000年   3篇
  1999年   12篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   7篇
  1992年   9篇
  1991年   4篇
  1990年   6篇
  1989年   7篇
  1988年   5篇
  1987年   5篇
  1986年   10篇
  1985年   12篇
  1984年   6篇
  1983年   3篇
  1982年   10篇
  1981年   5篇
  1980年   5篇
  1979年   7篇
  1978年   2篇
  1977年   5篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
  1972年   1篇
排序方式: 共有474条查询结果,搜索用时 15 毫秒
151.
We previously reported that HMGB1, which originally binds to chromatin in a manner competitive with linker histone H1 to modulate chromatin structure, enhances both intra-molecular and inter-molecular ligations. In this paper, we found that histone H1 differentially enhances ligation reaction of DNA double-strand breaks (DSB). Histone H1 stimulated exclusively inter-molecular ligation reaction of DSB with DNA ligase IIIbeta and IV, whereas HMGB1 enhanced mainly intra-molecular ligation reaction. Electron microscopy of direct DNA-protein interaction without chemical cross-linking visualized that HMGB1 bends and loops linear DNA to form compact DNA structure and that histone H1 is capable of assembling DNA in tandem arrangement with occasional branches. These results suggest that differences in the enhancement of DNA ligation reaction are due to those in alteration of DNA configuration induced by these two linker proteins. HMGB1 and histone H1 may function in non-homologous end-joining of DSB repair and V(D)J recombination in different manners.  相似文献   
152.
CMS/CD2AP is a cytoplasmic protein critical for the integrity of the kidney glomerular filtration and the T cell function. CMS contains domains and motifs characteristic for protein-protein interactions, and it is involved in the regulation of the actin cytoskeleton. We report here that the individual SH3 domains of CMS bind to phosphotyrosine proteins of approximately 80, 90, and 180 kDa in cell lysates stimulated with epidermal growth factor. The second SH3 domain of CMS bound specifically to a tyrosine-phosphorylated protein of 120 kDa, which we identified as the proto-oncoprotein c-Cbl. The c-Cbl-binding site for CMS mapped to the carboxyl terminus of c-Cbl and is different from the proline-rich region known to bind SH3-containing proteins. CMS binding to c-Cbl was markedly attenuated in a tyrosine phosphorylation-defective c-Cbl mutant indicating that this interaction is dependent on the tyrosine phosphorylation of CMS. It also implies that CMS interacts with c-Cbl in an inducible fashion upon stimulation of a variety of cell-surface receptors. Immunofluorescence analysis revealed that both proteins colocalize at lamellipodia and leading edges of cells, and we propose that the interaction of CMS with c-Cbl offers a mechanism by which c-Cbl associates and regulates the actin cytoskeleton.  相似文献   
153.
154.
In an attempt to clone protein tyrosine kinases, antiphosphotyrosine antibodies were used to screen lambda gt11 cDNA expression libraries. By this method, a 2.5-kilobase cDNA encoding a novel tyrosine kinase was isolated from a mouse liver cDNA library. This new gene is most closely related to the receptor tyrosine kinases ret, fms, and kit.  相似文献   
155.
Summary The nucleotide sequence of Salmonella abortus-equi fljA, which together with the phase 2 flagellin gene constitutes the fljBA operon and encodes the repressor for the phase 1 flagellin gene fliC, was determined. The repressor was predicted to be a basic protein consisting of 179 amino acid residues (Mr = 20419 Da) encoded by ORFII. This was confirmed by the fact that host fliC is repressed by plasmid-encoded ORFII, which indeed expresses a 20 kDa product as determined by urea SDS-polyacrylamide gel electrophoresis. An amino acid sequence capable of forming a helix-turn-helix type of structure was predicted in the C-terminal region of FljA. A rho-independent intercistronic terminator was detected between fljB and ftjA. Chloramphenicol acetyltransferase (CAT) assays of fusions indicated that the terminator is capable of reducing expression of fljA to the level of a few percent, relative to fljB in broth cultures and to 1 % in M9 glycerol cultures.  相似文献   
156.
Pre‐messenger RNA (pre‐mRNA) splicing is essential in eukaryotic cells. In animals and yeasts, the DEAH‐box RNA‐dependent ATPase Prp16 mediates conformational change of the spliceosome, thereby facilitating pre‐mRNA splicing. In yeasts, Prp16 also plays an important role in splicing fidelity. Conversely, PRP16 orthologs in Chlamydomonas reinhardtii and nematode do not have an important role in general pre‐mRNA splicing, but are required for gene silencing and sex determination, respectively. Functions of PRP16 orthologs in higher plants have not been described until now. Here we show that the CLUMSY VEIN (CUV) gene encoding the unique Prp16 ortholog in Arabidopsis thaliana facilitates auxin‐mediated development including male‐gametophyte transmission, apical–basal patterning of embryonic and gynoecium development, stamen development, phyllotactic flower positioning, and vascular development. cuv‐1 mutation differentially affects splicing and expression of genes involved in auxin biosynthesis, polar auxin transport, auxin perception and auxin signaling. The cuv‐1 mutation does not have an equal influence on pre‐mRNA substrates. We propose that Arabidopsis PRP16/CUV differentially facilitates expression of genes, which include genes involved in auxin biosynthesis, transport, perception and signaling, thereby collectively influencing auxin‐mediated development.  相似文献   
157.
158.
Recognition of intracellular pathogenic bacteria by members of the nucleotide-binding domain and leucine-rich repeat containing (NLR) family triggers immune responses against bacterial infection. A major response induced by several Gram-negative bacteria is the activation of caspase-1 via the Nlrc4 inflammasome. Upon activation, caspase-1 regulates the processing of proIL-1β and proIL-18 leading to the release of mature IL-1β and IL-18, and induction of pyroptosis. The activation of the Nlrc4 inflammasome requires the presence of an intact type III or IV secretion system that mediates the translocation of small amounts of flagellin or PrgJ-like rod proteins into the host cytosol to induce Nlrc4 activation. Using the Salmonella system, it was shown that Naip2 and Naip5 link flagellin and the rod protein PrgJ, respectively, to Nlrc4. Furthermore, phosphorylation of Nlrc4 at Ser533 by Pkcδ was found to be critical for the activation of the Nlrc4 inflammasome. Here, we show that Naip2 recognizes the Shigella T3SS inner rod protein MxiI and induces Nlrc4 inflammasome activation. The expression of MxiI in primary macrophages was sufficient to induce pyroptosis and IL-1β release, which were prevented in macrophages deficient in Nlrc4. In the presence of MxiI or Shigella infection, MxiI associated with Naip2, and Naip2 interacted with Nlrc4. siRNA-mediated knockdown of Naip2, but not Naip5, inhibited Shigella-induced caspase-1 activation, IL-1β maturation and Asc pyroptosome formation. Notably, the Pkcδ kinase was dispensable for caspase-1 activation and secretion of IL-1β induced by Shigella or Salmonella infection. These results indicate that activation of caspase-1 by Shigella is triggered by the rod protein MxiI that interacts with Naip2 to induce activation of the Nlrc4 inflammasome independently of the Pkcδ kinase.  相似文献   
159.
160.
Plants have been used as expression systems for a number of vaccines. However, the expression of vaccines in plants sometimes results in unexpected modification of the vaccines by N‐terminal blocking and sugar‐chain attachment. Although MucoRice‐CTB was thought to be the first cold‐chain‐free and unpurified oral vaccine, the molecular heterogeneity of MucoRice‐CTB, together with plant‐based sugar modifications of the CTB protein, has made it difficult to assess immunological activity of vaccine and yield from rice seed. Using a T‐DNA vector driven by a prolamin promoter and a signal peptide added to an overexpression vaccine cassette, we established MucoRice‐CTB/Q as a new generation oral cholera vaccine for humans use. We confirmed that MucoRice‐CTB/Q produces a single CTB monomer with an Asn to Gln substitution at the 4th glycosylation position. The complete amino acid sequence of MucoRice‐CTB/Q was determined by MS/MS analysis and the exact amount of expressed CTB was determined by SDS‐PAGE densitometric analysis to be an average of 2.35 mg of CTB/g of seed. To compare the immunogenicity of MucoRice‐CTB/Q, which has no plant‐based glycosylation modifications, with that of the original MucoRice‐CTB/N, which is modified with a plant N‐glycan, we orally immunized mice and macaques with the two preparations. Similar levels of CTB‐specific systemic IgG and mucosal IgA antibodies with toxin‐neutralizing activity were induced in mice and macaques orally immunized with MucoRice‐CTB/Q or MucoRice‐CTB/N. These results show that the molecular uniformed MucoRice‐CTB/Q vaccine without plant N‐glycan has potential as a safe and efficacious oral vaccine candidate for human use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号