首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27658篇
  免费   2428篇
  国内免费   2099篇
  2024年   52篇
  2023年   262篇
  2022年   562篇
  2021年   1400篇
  2020年   989篇
  2019年   1193篇
  2018年   1168篇
  2017年   877篇
  2016年   1219篇
  2015年   1673篇
  2014年   1989篇
  2013年   2186篇
  2012年   2484篇
  2011年   2283篇
  2010年   1451篇
  2009年   1312篇
  2008年   1462篇
  2007年   1327篇
  2006年   1147篇
  2005年   998篇
  2004年   806篇
  2003年   815篇
  2002年   635篇
  2001年   500篇
  2000年   467篇
  1999年   437篇
  1998年   291篇
  1997年   227篇
  1996年   230篇
  1995年   210篇
  1994年   187篇
  1993年   146篇
  1992年   210篇
  1991年   153篇
  1990年   161篇
  1989年   114篇
  1988年   86篇
  1987年   71篇
  1986年   59篇
  1985年   57篇
  1984年   40篇
  1983年   37篇
  1982年   38篇
  1981年   17篇
  1980年   13篇
  1979年   14篇
  1978年   20篇
  1976年   13篇
  1974年   13篇
  1972年   15篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
A process for human influenza H1N1 virus vaccine production from Madin–Darby canine kidney (MDCK) cells using a novel packed-bed bioreactor is described in this report. The mini-bioreactor was used to study the relationship between cell density and glucose consumption rate and to optimize the infection parameters of the influenza H1N1 virus (A/New Caledonia/20/99). The MDCK cell culture and virus infection were then monitored in a disposable perfusion bioreactor (AmProtein Current Perfusion Bioreactor) with proportional–integral–derivative control of pH, dissolved O2 (DO), agitation, and temperature. During 6 days of culture, the total cell number increased from 2.0?×?109 to 3.2?×?1010 cells. The maximum virus titers of 768 hemagglutinin units/100 μL and 7.8?×?107 50 % tissue culture infectious doses/mL were obtained 3 days after infection. These results demonstrate that using a disposable perfusion bioreactor for large-scale cultivation of MDCK cells, which allows for the control of DO, pH, and other conditions, is a convenient and stable platform for industrial-scale production of influenza vaccines.  相似文献   
992.
993.
Insect protein, used for in vitro culture media for entomopathogenic nematode, produces nematodes of high quality. However, the time-consuming culture and poor purity of nematodes hinder the commercial application of insect protein media. We show that hydrolyzed insect protein improves nematode purity in in vitro culture. The results revealed that nematode purity was increased by more than 90 %, and the culture period was reduced by 6 days. Estimated economic efficiency of using hydrolyzed insect protein medium was increased by 44.25 % over that obtained with non-hydrolyzed insect medium.  相似文献   
994.
This research was conducted to distinguish between the separate effects of the Phanerochaete chrysosporium inoculation and sample property heterogeneity induced by different inoculation regimes on the indigenous bacterial communities during agricultural waste composting. P. chrysosporium was inoculated during different phases. The bacterial community abundance and structure were determined by quantitative PCR and denaturing gradient gel electrophoresis analysis, respectively. Results indicated a significant stimulatory effect of P. chrysosporium inoculation on the bacterial community abundance. The bacterial community abundance significantly coincided with pile temperature, ammonium, and nitrate (P?<?0.006). Variance partition analysis showed that the P. chrysosporium inoculation directly explained 20.5 % (P?=?0.048) of the variation in the bacterial communities, whereas the sample property changes induced by different inoculation regimes indirectly explained up to 35.1 % (P?=?0.002). The bacterial community structure was significantly related to pile temperature, water-soluble carbon (WSC), and C/N ratio when P. chrysosporium were inoculated. The C/N ratio solely explained 7.9 % (P?=?0.03) of the variation in community structure, whereas pile temperature and WSC explained 7.7 % (P?=?0.026) and 7.5 % (P?=?0.034) of the variation, respectively. P. chrysosporium inoculation affected the indigenous bacterial communities most probably indirectly through increasing pile temperature, enhancing the substrate utilizability, and changing other physico-chemical factors.  相似文献   
995.
Imidacloprid, the largest selling insecticide in the world, is more stable in soil, and its environmental residue and effects are attracting people's close attention. One of imidacloprid metabolism pathways was degraded to CO2 through olefin imidacloprid pathway. Here, we report that sucrose as a utilizable substrate enhanced the cometabolism of imidacloprid by Stenotrophomonas maltophilia CGMCC 1.1788 to produce 5-hydroxy imidacloprid, whereas when succinate was used as a utilizable substrate, 5-hydroxy imidacloprid from imidacloprid was transformed to olefin imidacloprid, and the latter was further degraded. The hydroxylation of imidacloprid required NAD(P)H, whereas the dehydration of 5-hydroxy imidacloprid to form olefin imidacloprid required succinate rather than NAD(P)H. NADPH greatly favored the hydroxylation of imidacloprid more than NADH, and NADPH inhibited the dehydration of 5-hydroxy imidacloprid to olefin imidacloprid, but NADH did not. Therefore, sucrose may be metabolized through hexose monophosphate pathway to produce mainly NADPH which participated in the hydroxylation of imidacloprid to 5-hydroxy imidacloprid and meanwhile inhibited the dehydration of 5-hydroxy imidacloprid to olefin imidacloprid, whereas succinate may be metabolized mainly through the tricarboxylic acid cycle to produce NADH which was involved in hydroxylation of imidacloprid to 5-hydroxy imidacloprid but did not inhibit the dehydration of 5-hydroxy imidacloprid to olefin imidacloprid. Our results have a significant meaning in further understanding the influence of different utilizable substrates on the cometabolic pathways and the fate of environmental imidacloprid.  相似文献   
996.
997.
998.
2010年7月~2012年8月,在贵州省荔波南方喀斯特世界自然遗产地进行脊椎动物物种多样性调查时,分别在板寨、瑶山、翁昂和洞塘采集到游蛇科蛇类标本共5条,经分类鉴定为锦蛇属(Elaphe)的百花锦蛇(E.moellendorffi),为该物种在贵州省内首次发现,增加了其在国内的分布点.  相似文献   
999.
This study focused on increasing the freezing rate in cell vitrification cryopreservation by using a cryopreservation container possessing rigid mechanical properties and high heat-transfer efficiency. Applying a fast freezing rate in vitrification cryopreservation causes a rapid temperature change in the cryopreservation container and has a substantial impact on mechanical properties; therefore, a highly rigid cryopreservation container that possesses a fast freezing rate must be developed. To produce a highly rigid cryopreservation container possessing superior heat transfer efficiency, this study applies an electrochemical machining (ECM) method to an ANSI 316L stainless steel tube to treat the surface material by polishing and roughening, thereby increasing the freezing rate and reducing the probability of ice crystal formation. The results indicated that the ECM method provided high-quality surface treatment of the stainless steel tube. This method can reduce internal surface roughness in the stainless steel tube, thereby reducing the probability of ice crystal formation, and increase external surface roughness, consequently raising convection heat-transfer efficiency. In addition, by thinning the stainless steel tube, this method reduces heat capacity and thermal resistance, thereby increasing the freezing rate. The freezing rate (3399 ± 197 °C/min) of a stainless steel tube after interior and exterior polishing and exterior etching by applying ECM compared with the freezing rate (1818 ± 54 °C/min) of an original stainless steel tube was increased by 87%, which also exceeds the freezing rate (2015 ± 49 °C/min) of an original quartz tube that has a 20% lower heat capacity. However, the results indicated that increasing heat-transferring surface areas and reducing heat capacities cannot effectively increase the freezing rate of a stainless steel tube if only one method is applied; instead, both techniques must be implemented concurrently to improve the freezing rate.  相似文献   
1000.
The beet webworm, Loxostege sticticalis L., is a very dangerous polyphagous insect pest whose outbreaks periodically occur in southern Russia and northern China. The aim of our work was to describe the photoperiodic response of beet webworm populations from western (Krasnodar Territory and Rostov Province) and eastern [Buryatia and China (Hebei Province)] parts of the pest range. The insects were reared under constant photoperiods of 12–18 h and constant temperatures of 19–25°C. Incidence of diapause at different photoperiods did not show any considerable geographic differences, and the critical day length at which 50% of prepupae arrested their development was about 14–15 h in all the populations studied at experimental temperatures. The results obtained agree with the hypothesis on the existence of an area (or areas) where the pest survives during adverse periods and wherefrom it spreads when an outbreak begins (Saulich et al., 1983; Goryshin et al., 1986). Presumably, the larger part of the pest native habitats (to the north of the steppe zone) is occupied by temporary populations, incapable of surviving for long periods without an inflow of migrants from more southerly steppe regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号