首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1639篇
  免费   226篇
  国内免费   2篇
  1867篇
  2022年   14篇
  2021年   26篇
  2020年   22篇
  2019年   18篇
  2018年   35篇
  2017年   21篇
  2016年   49篇
  2015年   63篇
  2014年   81篇
  2013年   100篇
  2012年   128篇
  2011年   115篇
  2010年   95篇
  2009年   72篇
  2008年   70篇
  2007年   64篇
  2006年   67篇
  2005年   69篇
  2004年   60篇
  2003年   55篇
  2002年   53篇
  2001年   51篇
  2000年   53篇
  1999年   36篇
  1998年   23篇
  1997年   17篇
  1996年   13篇
  1995年   16篇
  1994年   13篇
  1993年   16篇
  1992年   23篇
  1991年   23篇
  1990年   25篇
  1989年   16篇
  1988年   24篇
  1987年   16篇
  1986年   20篇
  1985年   19篇
  1984年   18篇
  1983年   18篇
  1982年   19篇
  1980年   7篇
  1979年   10篇
  1978年   18篇
  1977年   9篇
  1976年   11篇
  1974年   12篇
  1972年   10篇
  1971年   7篇
  1969年   6篇
排序方式: 共有1867条查询结果,搜索用时 15 毫秒
111.
Changes in mitochondrial dynamics (fusion and fission) are known to occur during stem cell differentiation; however, the role of this phenomenon in tissue aging remains unclear. Here, we report that mitochondrial dynamics are shifted toward fission during aging of Drosophila ovarian germline stem cells (GSCs), and this shift contributes to aging‐related GSC loss. We found that as GSCs age, mitochondrial fragmentation and expression of the mitochondrial fission regulator, Dynamin‐related protein (Drp1), are both increased, while mitochondrial membrane potential is reduced. Moreover, preventing mitochondrial fusion in GSCs results in highly fragmented depolarized mitochondria, decreased BMP stemness signaling, impaired fatty acid metabolism, and GSC loss. Conversely, forcing mitochondrial elongation promotes GSC attachment to the niche. Importantly, maintenance of aging GSCs can be enhanced by suppressing Drp1 expression to prevent mitochondrial fission or treating with rapamycin, which is known to promote autophagy via TOR inhibition. Overall, our results show that mitochondrial dynamics are altered during physiological aging, affecting stem cell homeostasis via coordinated changes in stemness signaling, niche contact, and cellular metabolism. Such effects may also be highly relevant to other stem cell types and aging‐induced tissue degeneration.  相似文献   
112.
Porphyromonas gingivalis is a major periodontal pathogen that contains a variety of virulence factors. The antibody titer to P. gingivalis GroEL, a homologue of HSP60, is significantly higher in periodontitis patients than in healthy control subjects, suggesting that P. gingivalis GroEL is a potential stimulator of periodontal disease. However, the specific role of GroEL in periodontal disease remains unclear. Here, we investigated the effect of P. gingivalis GroEL on human periodontal ligament (PDL) cells in vitro, as well as its effect on alveolar bone resorption in rats in vivo. First, we found that stimulation of PDL cells with recombinant GroEL increased the secretion of the bone resorption-associated cytokines interleukin (IL)-6 and IL-8, potentially via NF-κB activation. Furthermore, GroEL could effectively stimulate PDL cell migration, possibly through activation of integrin α1 and α2 mRNA expression as well as cytoskeletal reorganization. Additionally, GroEL may be involved in osteoclastogenesis via receptor activator of nuclear factor κ-B ligand (RANKL) activation and alkaline phosphatase (ALP) mRNA inhibition in PDL cells. Finally, we inoculated GroEL into rat gingiva, and the results of microcomputed tomography (micro-CT) and histomorphometric assays indicated that the administration of GroEL significantly increased inflammation and bone loss. In conclusion, P. gingivalis GroEL may act as a potent virulence factor, contributing to osteoclastogenesis of PDL cells and resulting in periodontal disease with alveolar bone resorption.  相似文献   
113.
Two new species of Mongolbittacus Petrulevičius, Huang & Ren, 2007, Mongolbittacus speciosus sp. n. and Mongolbittacus oligophlebius sp. n., and two new species of Exilibittacus Yang, Ren & Shih, 2012, Exilibittacus foliaceus sp. n. and Exilibittacus plagioneurus sp. n., in the family Bittacidae, are described and illustrated based on five well-preserved fossil specimens. These specimens were collected from the late Middle Jurassic Jiulongshan Formation of Daohugou, Inner Mongolia, China. These new findings enhance our understanding of the morphological characters of early hangingflies and highlight the diversity of bittacids in the Mid Mesozoic ecosystems.  相似文献   
114.
Proton transfers in the photochemical reaction cycle of proteorhodopsin   总被引:2,自引:0,他引:2  
The spectral and photochemical properties of proteorhodopsin (PR) were determined to compare its proton transport steps to those of bacteriorhodopsin (BR). Static and time-resolved measurements on wild-type PR and several mutants were done in the visible and infrared (FTIR and FT-Raman). Assignment of the observed C=O stretch bands indicated that Asp-97 and Glu-108 serve as the proton acceptor and donor, respectively, to the retinal Schiff base, as do the residues at corresponding positions in BR, but there are numerous spectral and kinetic differences between the two proteins. There is no detectable dark-adaptation in PR, and the chromophore contains nearly entirely all-trans retinal. Because the pK(a) of Asp-97 is relatively high (7.1), the proton-transporting photocycle is produced only at alkaline pH. It contains at least seven transient states with decay times in the range from 10 micros to 200 ms, but the analysis reveals only three distinct spectral forms. The first is a red-shifted K-like state. Proton release does not occur during the very slow (several milliseconds) rise of the second, M-like, intermediate, consistent with lack of the residues facilitating extracellular proton release in BR. Proton uptake from the bulk, presumably on the cytoplasmic side, takes place prior to release (tau approximately 2 ms), and coincident with reprotonation of the retinal Schiff base. The intermediate produced by this process contains 13-cis retinal as does the N state of BR, but its absorption maximum is red-shifted relative to PR (like the O state of BR). The decay of this N-like state is coupled to reisomerization of the retinal to all-trans, and produces a state that is O-like in its C-C stretch bands, but has an absorption maximum apparently close to that of unphotolyzed PR.  相似文献   
115.
Co-stimulatory signaling pathway triggered by the binding of B7.1/B7.2 (CD80/86) of antigen-presenting cells (APCs) to CD28 of T cells is required for optimal T-cell activation. Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is a negative regulator of T cell activation, which competes with CD28 for B7.1/B7.2 binding with a greater affinity. Ipilimumab, a monoclonal antibody against CTLA-4, has shown positive efficacy in a pivotal clinical trial for the treatment of metastatic melanoma and was approved by FDA. However, the cost of monoclonal antibody-based therapeutics might limit the number of patients treated. To develop a novel therapeutics specifically targeting CTLA-4, we constructed a DNA vaccine by cloning the sequence of CTLA-4 fused with a transmembrane domain sequence of placental alkaline phosphatase (PLAP) into a mammalian expression plasmid, pVAC-1. Immunization with the resulting construct, pVAC-1-hCTLA-4, elicited antibody specific to human CTLA-4 with cross reactivity to murine CTLA-4, which was sufficient for inhibiting B16F10 tumor growth in c57BL/6 mice in the absence of measurable toxicity. Coupling liposome with pVAC-1-mCTLA-4 could break tolerance to self-antigen in BALB/c mice and induce potent immunity against murine CTLA-4, and suppress growth of subcutaneous renal cell carcinoma (Renca).  相似文献   
116.
117.
The aim was to examine the role of cyclooxygenase (COX)‐2‐mediated inflammation in the development of obese linked insulin resistance and fatty liver. The rats were fed separately regular diet (CONT), high‐fat diet (HFD) ad libitum, or energy restrictedly for 12 weeks. Rats fed HFD ad libitum were further divided into three subgroups co‐treated with vehicle (HFa), or a selective COX‐2 inhibitor celecoxib (HFa‐Cel) or mesulid (HFa‐Mes). Euglycemic hyperinsulinemic clamp (EHC) experiment was performed at the end of study. Another set of rats with similar grouping was further divided into those with a 4, 8, or 12‐week intervention period for hepatic sampling. Body weight was increased significantly and similarly in HFa, HFa‐Cel, and HFa‐Mes. Time‐dependent increases in plasma insulin, glucose, 8‐isoprostanes, leptin levels, homeostasis model assessment of insulin resistance (HOMA‐IR) and hepatic triglyceride contents shown in HFa were significantly reversed in HFa‐Cel and HFa‐Mes. During EHC period, the reduction in stimulation of whole body glucose uptake, suppression of hepatic glucose production and metabolic clearance rate of insulin shown in HFa were significantly reversed in HFa‐Cel and HFa‐Mes. The enhanced COX‐2 and tumor necrosis factor‐α (TNF‐α) but attenuated PPAR‐γ and C/EBP‐α mRNA expressions in epididymal fat shown in HFa were significantly reversed in HFa‐Cel and HFa‐Mes. The increases in average cell size of adipocytes and CD68 positive cells shown in HFa were also significantly reversed in HFa‐Cel and HFa‐Mes. Our findings suggest that COX‐2 activation in fat inflammation is important in the development of insulin resistance and fatty liver in high fat induced obese rats.  相似文献   
118.
Endothelin-1 (ET-1) has been found to increase cardiac -myosin heavy chain (-MyHC) gene expression and induce hypertrophy in cardiomyocytes. ET-1 has been demonstrated to increase intracellular reactive oxygen species (ROS) in cardiomyocytes. The exact molecular mechanism by which ROS regulate ET-1-induced -MyHC gene expression and hypertrophy in cardiomyocytes, however, has not yet been fully described. We aim to elucidate the molecular regulatory mechanism of ROS on ET-1-induced -MyHC gene expression and hypertrophic signaling in neonatal rat cardiomyocytes. Following stimulation with ET-1, cultured neonatal rat cardiomyocytes were examined for 3H-leucine incorporation and -MyHC promoter activities. The effects of antioxidant pretreatment on ET-1-induced cardiac hypertrophy and mitogen-activated protein kinase (MAPKs) phosphorylation were studied to elucidate the redox-sensitive pathway in cardiomyocyte hypertrophy and -MyHC gene expression. ET-1 increased 3H-leucine incorporation and -MyHC promoter activities, which were blocked by the specific ETA receptor antagonist BQ-485. Antioxidants significantly reduced ET-1-induced 3H-leucine incorporation, -MyHC gene promoter activities and MAPK (extracellular signal-regulated kinase, p38, and c-Jun NH2 -terminal kinase) phosphorylation. Both PD98059 and SB203580 inhibited ET-1-increased 3H-leucine incorporation and -MyHC promoter activities. Co-transfection of the dominant negative mutant of Ras, Raf, and MEK1 decreased the ET-1-induced -MyHC promoter activities, suggesting that the Ras-Raf-MAPK pathway is required for ET-1 action. Truncation analysis of the -MyHC gene promoter showed that the activator protein-2 (AP-2)/specificity protein-1 (SP-1) binding site(s) were(was) important cis-element(s) in ET-1-induced -MyHC gene expression. Moreover, ET-1-induced AP-2 and SP-1 binding activities were also inhibited by antioxidant. These data demonstrate the involvement of ROS in ET-1-induced hypertrophic responses and -MyHC expression. ROS mediate ET-1-induced activation of MAPK pathways, which culminates in hypertrophic responses and -MyHC expression. Tzu-Hurng Cheng, Neng-Lang Shih: These authors have equally contributed to this work  相似文献   
119.
Identification of novel cellular proteins as substrates to viral proteases would provide a new insight into the mechanism of cell–virus interplay. Eight nuclear proteins as potential targets for enterovirus 71 (EV71) 3C protease (3Cpro) cleavages were identified by 2D electrophoresis and MALDI-TOF analysis. Of these proteins, CstF-64, which is a critical factor for 3′ pre-mRNA processing in a cell nucleus, was selected for further study. A time-course study to monitor the expression levels of CstF-64 in EV71-infected cells also revealed that the reduction of CstF-64 during virus infection was correlated with the production of viral 3Cpro. CstF-64 was cleaved in vitro by 3Cpro but neither by mutant 3Cpro (in which the catalytic site was inactivated) nor by another EV71 protease 2Apro. Serial mutagenesis was performed in CstF-64, revealing that the 3Cpro cleavage sites are located at position 251 in the N-terminal P/G-rich domain and at multiple positions close to the C-terminus of CstF-64 (around position 500). An accumulation of unprocessed pre-mRNA and the depression of mature mRNA were observed in EV71-infected cells. An in vitro assay revealed the inhibition of the 3′-end pre-mRNA processing and polyadenylation in 3Cpro-treated nuclear extract, and this impairment was rescued by adding purified recombinant CstF-64 protein. In summing up the above results, we suggest that 3Cpro cleavage inactivates CstF-64 and impairs the host cell polyadenylation in vitro, as well as in virus-infected cells. This finding is, to our knowledge, the first to demonstrate that a picornavirus protein affects the polyadenylation of host mRNA.  相似文献   
120.
The pathogenic bacterium Pseudomonas aeruginosa uses acyl-HSL quorum-sensing signals to regulate genes controlling virulence and biofilm formation. We found that paraoxonase 1 (PON1), a mammalian lactonase with an unknown natural substrate, hydrolyzed the P. aeruginosa acyl-HSL 3OC12-HSL. In in vitro assays, mouse serum-PON1 was required and sufficient to degrade 3OC12-HSL. Furthermore, PON2 and PON3 also degraded 3OC12-HSL effectively. Serum-PON1 prevented P. aeruginosa quorum-sensing and biofilm formation in vitro by inactivating the quorum-sensing signal. Although 3OC12-HSL production by P. aeruginosa was important for virulence in a mouse sepsis model, Pon1-knock-out mice were paradoxically protected. These mice showed increased levels of PON2 and PON3 mRNA in epithelial tissues suggesting a possible compensatory mechanism. Thus, paraoxonase interruption of bacterial communication represents a novel mechanism to modulate quorum-sensing by bacteria. The consequences for host immunity are yet to be determined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号