首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1954篇
  免费   105篇
  2022年   8篇
  2021年   11篇
  2020年   13篇
  2019年   9篇
  2018年   13篇
  2017年   24篇
  2016年   24篇
  2015年   48篇
  2014年   58篇
  2013年   89篇
  2012年   91篇
  2011年   117篇
  2010年   85篇
  2009年   83篇
  2008年   126篇
  2007年   123篇
  2006年   141篇
  2005年   150篇
  2004年   137篇
  2003年   123篇
  2002年   91篇
  2001年   36篇
  2000年   57篇
  1999年   33篇
  1998年   31篇
  1997年   20篇
  1996年   19篇
  1995年   17篇
  1994年   17篇
  1993年   16篇
  1992年   26篇
  1991年   28篇
  1990年   21篇
  1989年   26篇
  1988年   20篇
  1987年   19篇
  1986年   15篇
  1985年   19篇
  1984年   10篇
  1983年   8篇
  1982年   6篇
  1980年   6篇
  1979年   11篇
  1978年   4篇
  1977年   6篇
  1976年   5篇
  1975年   7篇
  1974年   4篇
  1973年   2篇
  1972年   2篇
排序方式: 共有2059条查询结果,搜索用时 15 毫秒
201.
Plasmodium vivax, the second most prevalent of the human malaria parasites, is estimated to affect 75 million people annually. It is very rare, however, in west and central Africa, due to the high prevalence of the Duffy negative phenotype in the human population. Due to its rarity in Africa, previous studies on the phylogeny of world-wide P. vivax have suffered from insufficient samples of African parasites. Here we compare the mitochondrial sequence diversity of parasites from Africa with those from other areas of the world, in order to investigate the origin of present-day African P. vivax. Mitochondrial genome sequencing revealed relatively little polymorphism within the African population compared to parasites from the rest of the world. This, combined with sequence similarity with parasites from India, suggests that the present day African P. vivax population in humans may have been introduced relatively recently from the Indian subcontinent. Haplotype network analysis also raises the possibility that parasites currently found in Africa and South America may be the closest extant relatives of the ancestors of the current world population. Lines of evidence are adduced that this ancestral population may be from an ancient stock of P. vivax in Africa.  相似文献   
202.
The morphological diversity of insects is one of the most striking phenomena in biology. Evolutionary modifications to the relative sizes of body parts, including the evolution of traits with exaggerated proportions, are responsible for a vast range of body forms. Remarkable examples of an insect trait with exaggerated proportions are the mandibular weapons of stag beetles. Male stag beetles possess extremely enlarged mandibles which they use in combat with rival males over females. As with other sexually selected traits, stag beetle mandibles vary widely in size among males, and this variable growth results from differential larval nutrition. However, the mechanisms responsible for coupling nutrition with growth of stag beetle mandibles (or indeed any insect structure) remain largely unknown. Here, we demonstrate that during the development of male stag beetles (Cyclommatus metallifer), juvenile hormone (JH) titers are correlated with the extreme growth of an exaggerated weapon of sexual selection. We then investigate the putative role of JH in the development of the nutritionally-dependent, phenotypically plastic mandibles, by increasing hemolymph titers of JH with application of the JH analog fenoxycarb during larval and prepupal developmental periods. Increased JH signaling during the early prepupal period increased the proportional size of body parts, and this was especially pronounced in male mandibles, enhancing the exaggerated size of this trait. The direction of this response is consistent with the measured JH titers during this same period. Combined, our results support a role for JH in the nutrition-dependent regulation of extreme mandible growth in this species. In addition, they illuminate mechanisms underlying the evolution of trait proportion, the most salient feature of the evolutionary diversification of the insects.  相似文献   
203.
Two new crystal protein genes, cry24B and s1orf2, were cloned from a mosquitocidal Bacillus thuringiensis serovar sotto strain. The cry24B and s1orf2 genes encoded a 76-kDa and 62-kDa protein, respectively. The Cry24B protein retained five conserved regions commonly found in the existing Cry proteins. The amino acid sequence of the S1ORF2 had a high homology to that of the ORF2 protein of B. thuringiensis serovar jegathesan. Southern hybridization experiments with a cry24B gene-specific probe revealed that these genes are located on two large plasmids of > 100 kb. When the two genes, cry24B and s1orf2, were expressed in an acrystalliferous B. thuringiensis host, the proteins were synthesized and accumulated as inclusions. These inclusions exhibited no larvicidal activities against three mosquito species: Aedes aegypti, Anopheles stephensi, and Culex pipiens molestus. Likewise, the inclusions contained no cytocidal activity against HeLa cells.  相似文献   
204.
205.
In the final step of tRNA splicing, the 2'-phosphotransferase catalyzes the transfer of the extra 2'-phosphate from the precursor-ligated tRNA to NAD. We have determined the crystal structure of the 2'-phosphotransferase protein from Aeropyrum pernix K1 at 2.8 Angstroms resolution. The structure of the 2'-phosphotransferase contains two globular domains (N and C-domains), which form a cleft in the center. The N-domain has the winged helix motif, a subfamily of the helix-turn-helix family, which is shared by many DNA-binding proteins. The C-domain of the 2'-phosphotransferase superimposes well on the NAD-binding fold of bacterial (diphtheria) toxins, which catalyze the transfer of ADP ribose from NAD to target proteins, indicating that the mode of NAD binding by the 2'-phosphotransferase could be similar to that of the bacterial toxins. The conserved basic residues are assembled at the periphery of the cleft and could participate in the enzyme contact with the sugar-phosphate backbones of tRNA. The modes by which the two functional domains recognize the two different substrates are clarified by the present crystal structure of the 2'-phosphotransferase.  相似文献   
206.
Peroxiredoxins (Prxs) are thiol-dependent peroxidases that catalyze the detoxification of various peroxide substrates such as H2O2, peroxinitrite, and hydroperoxides, and control some signal transduction in eukaryotic cells. Prxs are found in all cellular organisms and represent an enormous superfamily. Recent genome sequencing projects and biochemical studies have identified a novel subfamily, the archaeal Prxs. Their primary sequences are similar to those of the 1-Cys Prxs, which use only one cysteine residue in catalysis, while their catalytic properties resemble those of the typical 2-Cys Prxs, which utilize two cysteine residues from adjacent monomers within a dimer in catalysis. We present here the X-ray crystal structure of an archaeal Prx from the aerobic hyperthermophilic crenarchaeon, Aeropyrum pernix K1, determined at 2.3 A resolution (Rwork of 17.8% and Rfree of 23.0%). The overall subunit arrangement of the A.pernix archaeal Prx is a toroid-shaped pentamer of homodimers, or an (alpha2)5 decamer, as observed in the previously reported crystal structures of decameric Prxs. The basic folding topology and the peroxidatic active site structure are essentially the same as those of the 1-Cys Prx, hORF6, except that the C-terminal extension of the A.pernix archaeal Prx forms a unique helix with its flanking loops. The thiol group of the peroxidatic cysteine C50 is overoxidized to sulfonic acid. Notably, the resolving cysteine C213 forms the intra-monomer disulfide bond with the third cysteine, C207, which should be a unique structural characteristic in the many archaeal Prxs that retain two conserved cysteine residues in the C-terminal region. The conformational flexibility near the intra-monomer disulfide linkage might be necessary for the dramatic structural rearrangements that occur in the catalytic cycle.  相似文献   
207.
The dissociation and reassociation processes of amyloid protofibrils initiated by pressure-jump have been monitored with real-time (1)H NMR spectroscopy using an intrinsically denatured disulfide-deficient variant of hen lysozyme. Upon pressure-jump up to 2 kbar, the matured protofibrils grown over several months become fully dissociated into monomers within a few days. Upon pressure-jump down to 30 bar, the dissociated monomers immediately start reassociating. The association and dissociation cycle can be repeated reproducibly by alternating pressure, establishing a notion that the protofibril formation is simply a slow kinetic process toward thermodynamic equilibrium. The outstanding simplicity and effectiveness of pressure in controlling the protofibril formation opens a new route for investigating mechanisms of amyloid fibril-forming reactions. The noted variation in the pressure-induced dissociation rate with the progress of the association reaction suggests multiple mechanisms for the elongation of the protofibril. The disulfide-deficient hen lysozyme offers a particularly simple model system for thermodynamic and kinetic studies of protofibril formation as well as for screening drugs for amyloidosis.  相似文献   
208.
We developed a metabolically engineered yeast which produces lactic acid efficiently. In this recombinant strain, the coding region for pyruvate decarboxylase 1 (PDC1) on chromosome XII is substituted for that of the l-lactate dehydrogenase gene (LDH) through homologous recombination. The expression of mRNA for the genome-integrated LDH is regulated under the control of the native PDC1 promoter, while PDC1 is completely disrupted. Using this method, we constructed a diploid yeast transformant, with each haploid genome having a single insertion of bovine LDH. Yeast cells expressing LDH were observed to convert glucose to both lactate (55.6 g/liter) and ethanol (16.9 g/liter), with up to 62.2% of the glucose being transformed into lactic acid under neutralizing conditions. This transgenic strain, which expresses bovine LDH under the control of the PDC1 promoter, also showed high lactic acid production (50.2 g/liter) under nonneutralizing conditions. The differences in lactic acid production were compared among four different recombinants expressing a heterologous LDH gene (i.e., either the bovine LDH gene or the Bifidobacterium longum LDH gene): two transgenic strains with 2microm plasmid-based vectors and two genome-integrated strains.  相似文献   
209.
The thyroid hormone-disrupting activity of tetrabromobisphenol A (TBBPA), a flame retardant, and related compounds was examined. TBBPA, tetrachlorobisphenol A (TCBPA), tetramethylbisphenol A (TMBPA) and 3,3'-dimethylbisphenol A (DMBPA) markedly inhibited the binding of triiodothyronine (T3; 1 x 10(-10) M) to thyroid hormone receptor in the concentration range of 1 x 10(-7)-1 x 10(-4) M, while bisphenol A and 2,2-diphenylpropane were inactive. TBBPA, TCBPA, TMBPA and DMBPA did not exhibit thyroid hormonal activity in a thyroid hormone-responsive reporter assay using a Chinese hamster ovary cell line (CHO-K1) transfected with thyroid hormone receptor alpha1 or beta1, but TBBPA and TCBPA showed significant anti-thyroid hormone effects on the activity of T3 (1 x 10(-8) M) in the concentration range of 3 x 10(-6) - 5 x 10(-5) M. The thyroid hormone-disrupting activity of TBBPA was also examined in terms of the effect on amphibian metamorphosis stimulated by thyroid hormone. TBBPA in the concentration range of 1 x 10(-8) to 1 x 10(-6) M showed suppressive action on T3 (5 x 10(-8) M)-enhancement of Rana rugosa tadpole tail shortening. These facts suggest that TBBPA, TCBPA, TMBPA and DMBPA can act as thyroid hormone-disrupting agents.  相似文献   
210.
NADP-malic enzyme (NADP-ME) and phosphoenolpyruvate carboxykinase(PCK) are specifically expressed in bundle sheath cells (BSCs)in NADP-ME-type and PCK-type C4 plants, respectively. Unlikethe high activities of these enzymes in the green leaves ofC4 plants, their low activities have been detected in the leavesof C3 plants. In order to elucidate the differences in the geneexpression system between C3 and C4 plants, we have producedchimeric constructs with the ß-glucuronidase (GUS)reporter gene under the control of the maize NADP-Me (ZmMe)or Zoysia japonica Pck (ZjPck) promoter and introduced theseconstructs into rice. In leaves of transgenic rice, the ZmMepromoter directed GUS expression not only in mesophyll cells(MCs) but also in BSCs and vascular cells, whereas the ZjPckpromoter directed GUS expression only in BSCs and vascular cells.Neither the ZjPck nor ZmMe promoters induced GUS expressiondue to light. In rice leaves, the endogenous NADP-Me (OsMe1)was expressed in MCs, BSCs and vascular cells, whereas the ricePck (OsPck1) was expressed only in BSCs and vascular cells.Taken together, the results obtained from transgenic rice demonstratethat the expression pattern of ZmMe or ZjPck in transgenic ricewas reflected by that of its counterpart gene in rice. (Received August 8, 2004; Accepted February 20, 2005 )  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号