首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1953篇
  免费   105篇
  2022年   8篇
  2021年   11篇
  2020年   13篇
  2019年   9篇
  2018年   13篇
  2017年   24篇
  2016年   24篇
  2015年   48篇
  2014年   58篇
  2013年   89篇
  2012年   91篇
  2011年   117篇
  2010年   85篇
  2009年   83篇
  2008年   126篇
  2007年   123篇
  2006年   141篇
  2005年   150篇
  2004年   137篇
  2003年   123篇
  2002年   91篇
  2001年   36篇
  2000年   57篇
  1999年   33篇
  1998年   31篇
  1997年   20篇
  1996年   19篇
  1995年   17篇
  1994年   17篇
  1993年   16篇
  1992年   26篇
  1991年   28篇
  1990年   21篇
  1989年   26篇
  1988年   20篇
  1987年   19篇
  1986年   15篇
  1985年   19篇
  1984年   10篇
  1983年   8篇
  1982年   6篇
  1980年   6篇
  1979年   11篇
  1978年   4篇
  1977年   6篇
  1976年   5篇
  1975年   7篇
  1974年   4篇
  1973年   2篇
  1972年   2篇
排序方式: 共有2058条查询结果,搜索用时 15 毫秒
171.
The Evolutionarily Significant Unit (ESU) was conceptualized in 1986 as a conservation unit below the species level, theoretically applicable to a wide range of taxa. The concept has gained support, and various definitions or criteria, some of which are inconsistent with each other, have since been proposed. Recent critiques of the ESU have pointed out the dominance of definitions biased to the identification of long-term isolation or neutral genetic variation, which has largely ignored the adaptive components. We present here the validity of such claims and show how the ESU definitions have actually been applied in research. We surveyed scientific journals for original papers supporting ESU designations and determined who among the proponents of ESU definitions have gained wider support. Our results indicate that indeed there are inconsistencies with the original concept and with the existing definitions. Although the original concept recommended both ecological and genetic data as the basis for identification of ESUs, which reflect true evolutionary variation, recent definitions have become biased to either neutral genetic variation or adaptive variation. The definition which uses genetic data to assess neutral genetic variation (long-term isolation) has gained major support, and therefore validates the earlier claims. To bridge the gap between the original concept and the practical application, we propose the use of partial ESU and full ESU designations. The application of full ESU should be limited solely to when both information about neutral genetic variation and adaptive variation are available. In other cases, in which only a part of the variation is examined, we should use the term partial ESU (e.g., molecular-based ESU) and continue to investigate focal populations from other aspects of variations to designate full ESU.  相似文献   
172.
To evaluate hypoxic cells in live mouse liver tissues, immunohistochemistry for protein adducts of reductively activated pimonidazole (PARaPi) was performed using the “in vivo cryotechnique (IVCT)” followed by freeze-substitution fixation. This method was used because cryotechniques have some merits for examining biological events in living animal organs with improved time-resolution compared to conventional perfusion and/or immersion chemical fixation. Pimonidazole was intraperitoneally injected into living mice, and then after various times of hypoxia, their livers were quickly frozen by IVCT. The frozen liver tissues were freeze-substituted in acetone containing 2% paraformaldehyde, and routinely embedded in paraffin wax. De-paraffinized sections were immunostained for PARaPi. In liver tissues of mice without hypoxia, almost no immunostained cells were detected. However, in liver tissues with 30 s of hypoxia, some hepatocytes in the pericentral zones were strongly immunostained. After 60 s of hypoxia, many hepatocytes were immunostained with various degrees of staining intensity in all lobular zones, indicating different reactivities of pimonidazole in the hepatocytes to hypoxia. At this time, the general immunoreactivity also appeared to be stronger around the central veins than other portal areas. Although many hepatocytes were immunostained for PARaPi in the liver tissues with perfusion fixation via heart, those with perfusion via portal vein were not immunostained. Thus, IVCT is useful to detect time-dependent hypoxic states with pimonidazole treatment in living animal organs.  相似文献   
173.
The immutability of the genetic code has been challenged with the successful reassignment of the UAG stop codon to non-natural amino acids in Escherichia coli. In the present study, we demonstrated the in vivo reassignment of the AGG sense codon from arginine to l-homoarginine. As the first step, we engineered a novel variant of the archaeal pyrrolysyl-tRNA synthetase (PylRS) able to recognize l-homoarginine and l-N6-(1-iminoethyl)lysine (l-NIL). When this PylRS variant or HarRS was expressed in E. coli, together with the AGG-reading tRNAPylCCU molecule, these arginine analogs were efficiently incorporated into proteins in response to AGG. Next, some or all of the AGG codons in the essential genes were eliminated by their synonymous replacements with other arginine codons, whereas the majority of the AGG codons remained in the genome. The bacterial host''s ability to translate AGG into arginine was then restricted in a temperature-dependent manner. The temperature sensitivity caused by this restriction was rescued by the translation of AGG to l-homoarginine or l-NIL. The assignment of AGG to l-homoarginine in the cells was confirmed by mass spectrometric analyses. The results showed the feasibility of breaking the degeneracy of sense codons to enhance the amino-acid diversity in the genetic code.  相似文献   
174.
Axillary shoot formation is a key determinant of plant architecture. Formation of the axillary shoot is regulated by initiation of the axillary meristem or outgrowth of the axillary bud. Here, we show that rice (Oryza sativa) TILLERS ABSENT1 (TAB1; also known as Os WUS), an ortholog of Arabidopsis thaliana WUS, is required to initiate axillary meristem development. We found that formation of the axillary meristem in rice proceeds via a transient state, which we term the premeristem, characterized by the expression of OSH1, a marker of indeterminate cells in the shoot apical meristem. In the tab1-1 (wus-1) mutant, however, formation of the axillary meristem is arrested at various stages of the premeristem zone, and OSH1 expression is highly reduced. TAB1/WUS is expressed in the premeristem zone, where it shows a partially overlapping pattern with OSH1. It is likely, therefore, that TAB1 plays an important role in maintaining the premeristem zone and in promoting the formation of the axillary meristem by promoting OSH1 expression. Temporal expression patterns of WUSCHEL-RELATED HOMEOBOX4 (WOX4) indicate that WOX4 is likely to regulate meristem maintenance instead of TAB1 after establishment of the axillary meristem. Lastly, we show that the prophyll, the first leaf in the secondary axis, is formed from the premeristem zone and not from the axillary meristem.  相似文献   
175.
176.
177.
178.
179.
Galanin is a neuropeptide that is widely distributed in the central and peripheral nervous systems. In a previous study, we showed that a small cell lung carcinoma (SCLC) cell line, SBC-3A, released progalanin but not galanin, and that progalanin was then converted to galanin(1-20), the active form. Because the galanin(1-20) had undergone hydrolysis at Arg and Lys residues, the protease concerned was surmised to have a trypsin-like activity. The present study was performed to identify the trypsin-like protease which had previously been found to activate progalanin in this tumor tissue. The protease was isolated using chromatography and electrophoresis, and identified in tumor extracts from SBC-3A tumor-bearing mice; the major protease was found to be plasmin. We next confirmed that extracellular processing of progalanin occurs in SCLC tumor tissue (tumors produced by the implantation of SBC-3A cells into mice), and in two types of breast tumor tissue (obtained by implantation into mice of BT-549 and MDA-MB-436 cells). In cell culture, processed forms of progalanin were undetectable in SBC-3A, BT-549 or MDA-MB-436 cells. Conversely, gel filtration chromatography analysis of tumor extracts from SBC-3A, BT-549 and MDA-MB-436-bearing mice, revealed that galanin-like immunoreactivity (galanin-LI) in these tumor extracts was due to the presence of progalanin (14 kDa) and galanin(1-20) (2 kDa). Moreover, trypsin-like protease activity was elevated, and plasmin was expressed abundantly in SBC-3A, BT-549 and MDA-MB-436 tumors in mice. In addition, tranexamic acid, a plasmin inhibitor, inhibited progalanin conversion to galanin(1-20). The present study revealed that plasmin was present in tumor tissue, and that it was responsible for processing progalanin to galanin(1-20) in the extracellular environment.  相似文献   
180.
The hypermodified nucleoside N6‐threonylcarbamoyladenosine resides at position 37 of tRNA molecules bearing U at position 36 and maintains translational fidelity in the three kingdoms of life. The N6‐threonylcarbamoyl moiety is composed of L ‐threonine and bicarbonate, and its synthesis was genetically shown to require YrdC/Sua5. YrdC/Sua5 binds to tRNA and ATP. In this study, we analyzed the L ‐threonine‐binding mode of Sua5 from the archaeon Sulfolobus tokodaii. Isothermal titration calorimetry measurements revealed that S. tokodaii Sua5 binds L ‐threonine more strongly than L ‐serine and glycine. The Kd values of Sua5 for L ‐threonine and L ‐serine are 9.3 μM and 2.6 mM, respectively. We determined the crystal structure of S. tokodaii Sua5, complexed with AMPPNP and L ‐threonine, at 1.8 Å resolution. The L ‐threonine is bound next to AMPPNP in the same pocket of the N‐terminal domain. Thr118 and two water molecules form hydrogen bonds with AMPPNP in a unique manner for adenine‐specific recognition. The carboxyl group and the side‐chain hydroxyl and methyl groups of L ‐threonine are buried deep in the pocket, whereas the amino group faces AMPPNP. The L ‐threonine is located in a suitable position to react together with ATP for the synthesis of N6‐threonylcarbamoyladenosine. Proteins 2011. © 2011 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号