首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1158篇
  免费   54篇
  1212篇
  2022年   5篇
  2021年   3篇
  2020年   6篇
  2019年   5篇
  2018年   5篇
  2017年   13篇
  2016年   9篇
  2015年   29篇
  2014年   32篇
  2013年   57篇
  2012年   56篇
  2011年   83篇
  2010年   52篇
  2009年   51篇
  2008年   97篇
  2007年   92篇
  2006年   93篇
  2005年   115篇
  2004年   104篇
  2003年   86篇
  2002年   57篇
  2001年   8篇
  2000年   6篇
  1999年   7篇
  1998年   9篇
  1997年   12篇
  1996年   10篇
  1995年   7篇
  1994年   10篇
  1993年   8篇
  1992年   6篇
  1991年   7篇
  1990年   5篇
  1989年   9篇
  1988年   6篇
  1987年   2篇
  1986年   5篇
  1985年   6篇
  1984年   5篇
  1983年   6篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   4篇
  1977年   4篇
  1976年   4篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
排序方式: 共有1212条查询结果,搜索用时 0 毫秒
991.
Programmed cell death (PCD) is a common host response to microbial infection [1-3]. In plants, PCD is associated with immunity to biotrophic pathogens, but it can also promote disease upon infection by necrotrophic pathogens [4]. Therefore, plant cell-suicide programs must be strictly controlled. Here we demonstrate that the Arabidopsis thaliana Brassinosteroid Insensitive 1 (BRI1)-associated receptor Kinase 1 (BAK1), which operates as a coreceptor of BRI1 in brassinolide (BL)-dependent plant development, also regulates the containment of microbial infection-induced cell death. BAK1-deficient plants develop spreading necrosis upon infection. This is accompanied by production of reactive oxygen intermediates and results in enhanced susceptibility to necrotrophic fungal pathogens. The exogenous application of BL rescues growth defects of bak1 mutants but fails to restore immunity to fungal infection. Moreover, BL-insensitive and -deficient mutants do not exhibit spreading necrosis or enhanced susceptibility to fungal infections. Together, these findings suggest that plant steroid-hormone signaling is dispensable for the containment of infection-induced PCD. We propose a novel, BL-independent function of BAK1 in plant cell-death control that is distinct from its BL-dependent role in plant development.  相似文献   
992.
993.
994.
Plant basal resistance is activated by virulent pathogens in susceptible host plants. A Colletotrichum orbiculare fungal mutant defective in the SSD1 gene, which regulates cell wall composition, is restricted by host basal resistance responses. Here, we identified the Nicotiana benthamiana signaling pathway involved in basal resistance by silencing the defense-related genes required for restricting the growth of the C. orbiculare mutant. Only silencing of MAP Kinase Kinase2 or of both Salicylic Acid Induced Protein Kinase (SIPK) and Wound Induced Protein Kinase (WIPK), two mitogen-activated protein (MAP) kinases, allowed the mutant to infect and produce necrotic lesions similar to those of the wild type on inoculated leaves. The fungal mutant penetrated host cells to produce infection hyphae at a higher frequency in SIPK WIPK-silenced plants than in nonsilenced plants, without inducing host cellular defense responses. Immunocomplex kinase assays revealed that SIPK and WIPK were more active in leaves inoculated with mutant fungus than with the wild type, suggesting that induced resistance correlates with MAP kinase activity. Infiltration of heat-inactivated mutant conidia induced both SIPK and WIPK more strongly than did those of the wild type, while conidial exudates of the wild type did not suppress MAP kinase induction by mutant conidia. Therefore, activation of a specific MAP kinase pathway by fungal cell surface components determines the effective level of basal plant resistance.  相似文献   
995.
In many microorganisms, menaquinone is an essential lipid-soluble electron carrier. Recently, an alternative menaquinone biosynthetic pathway was found in some microorganisms [Hiratsuka, T., Furihata, K., Ishikawa, J., Yamashita, H., Itoh, N., Seto, H., Dairi, T., 2008. An alternative menaquinone biosynthetic pathway operating in microorganisms. Science 321, 1670–1673]. Here, we report the 1.55 Å crystal structure of MqnD (TTHA1568) from Thermus thermophilus HB8, an enzyme within the alternative menaquinone biosynthetic pathway. The structure comprises two domains with α/β structures, a large domain and a small domain. L(+)-Tartaric acid was bound to the pocket between the two domains, suggesting that this pocket is a putative active site. The conserved glycine residues at positions 78, 80 and 82 seem to act as hinges, allowing the substrate to access the pocket. Highly conserved residues, such as Asp14, Asp38, Asn43, Ser57, Thr107, Ile144, His145, Glu146, Leu176 and Tyr234, are located at this pocket, suggesting that these residues are involved in substrate binding and/or catalysis, and especially, His145 could function as a catalytic base. Since humans and their commensal intestinal bacteria, including lactobacilli, lack the alternative menaquinone biosynthetic pathway, this enzyme in pathogenic species, such as Helicobacter pylori and Campylobacter jejuni, is an attractive target for the development of chemotherapeutics. This high-resolution structure may contribute toward the development of its inhibitors.  相似文献   
996.
Actin is one of the most conserved proteins in nature. Its assembly and disassembly are regulated by many proteins, including the family of actin‐depolymerizing factor homology (ADF‐H) domains. ADF‐H domains can be divided into five classes: ADF/cofilin, glia maturation factor (GMF), coactosin, twinfilin, and Abp1/drebrin. The best‐characterized class is ADF/cofilin. The other four classes have drawn much less attention and very few structures have been reported. This study presents the solution NMR structure of the ADF‐H domain of human HIP‐55‐drebrin‐like protein, the first published structure of a drebrin‐like domain (mammalian), and the first published structure of GMF β (mouse). We also determined the structures of mouse GMF γ, the mouse coactosin‐like domain and the C‐terminal ADF‐H domain of mouse twinfilin 1. Although the overall fold of the five domains is similar, some significant differences provide valuable insights into filamentous actin (F‐actin) and globular actin (G‐actin) binding, including the identification of binding residues on the long central helix. This long helix is stabilized by three or four residues. Notably, the F‐actin binding sites of mouse GMF β and GMF γ contain two additional β‐strands not seen in other ADF‐H structures. The G‐actin binding site of the ADF‐H domain of human HIP‐55‐drebrin‐like protein is absent and distorted in mouse GMF β and GMF γ.  相似文献   
997.
A series of pyrimidine analogues derived from ATC0175 were potent antagonists of human MCH-R1 in vitro. Significantly improved receptor selectivity was achieved with several analogues from this series, but no improvement in brain partitioning was noted. One example from this series was shown to inhibit food intake and decrease body weight in a chronic study. However no clear correlation between the pharmacodynamic effect and the pharmacokinetic data with respect to brain concentration was discernible leading us to conclude that the observed effect was most likely not due to interaction with the MCH-R1.  相似文献   
998.
Selenocysteine (Sec) is the 21st amino acid in translation. Sec tRNA (tRNASec) has an anticodon complementary to the UGA codon. We solved the crystal structure of human tRNASec. tRNASec has a 9-bp acceptor stem and a 4-bp T stem, in contrast with the 7-bp acceptor stem and the 5-bp T stem in the canonical tRNAs. The acceptor stem is kinked between the U6:U67 and G7:C66 base pairs, leading to a bent acceptor-T stem helix. tRNASec has a 6-bp D stem and a 4-nt D loop. The long D stem includes unique A14:U21 and G15:C20a pairs. The D-loop:T-loop interactions include the base pairs G18:U55 and U16:U59, and a unique base triple, U20:G19:C56. The extra arm comprises of a 6-bp stem and a 4-nt loop. Remarkably, the D stem and the extra arm do not form tertiary interactions in tRNASec. Instead, tRNASec has an open cavity, in place of the tertiary core of a canonical tRNA. The linker residues, A8 and U9, connecting the acceptor and D stems, are not involved in tertiary base pairing. Instead, U9 is stacked on the first base pair of the extra arm. These features might allow tRNASec to be the target of the Sec synthesis/incorporation machineries.  相似文献   
999.
Toward the expansion of the genetic alphabet, we present an unnatural base pair system for efficient PCR amplification, enabling the site-specific incorporation of extra functional components into DNA. This system can be applied to conventional PCR protocols employing DNA templates containing unnatural bases, natural and unnatural base triphosphates, and a 3′→5′ exonuclease-proficient DNA polymerase. For highly faithful and efficient PCR amplification involving the unnatural base pairing, we identified the natural-base sequences surrounding the unnatural bases in DNA templates by an in vitro selection technique, using a DNA library containing the unnatural base. The system facilitates the site-specific incorporation of a variety of modified unnatural bases, linked with functional groups of interest, into amplified DNA. DNA fragments (0.15 amol) containing the unnatural base pair can be amplified 107-fold by 30 cycles of PCR, with <1% total mutation rate of the unnatural base pair site. Using the system, we demonstrated efficient PCR amplification and functionalization of DNA fragments for the extremely sensitive detection of zeptomol-scale target DNA molecules from mixtures with excess amounts (pmol scale) of foreign DNA species. This unnatural base pair system will be applicable to a wide range of DNA/RNA-based technologies.  相似文献   
1000.
The DNA polymerase processivity factor of the Epstein-Barr virus, BMRF1, associates with the polymerase catalytic subunit, BALF5, to enhance the polymerase processivity and exonuclease activities of the holoenzyme. In this study, the crystal structure of C-terminally truncated BMRF1 (BMRF1-ΔC) was solved in an oligomeric state. The molecular structure of BMRF1-ΔC shares structural similarity with other processivity factors, such as herpes simplex virus UL42, cytomegalovirus UL44, and human proliferating cell nuclear antigen. However, the oligomerization architectures of these proteins range from a monomer to a trimer. PAGE and mutational analyses indicated that BMRF1-ΔC, like UL44, forms a C-shaped head-to-head dimer. DNA binding assays suggested that basic amino acid residues on the concave surface of the C-shaped dimer play an important role in interactions with DNA. The C95E mutant, which disrupts dimer formation, lacked DNA binding activity, indicating that dimer formation is required for DNA binding. These characteristics are similar to those of another dimeric viral processivity factor, UL44. Although the R87E and H141F mutants of BMRF1-ΔC exhibited dramatically reduced polymerase processivity, they were still able to bind DNA and to dimerize. These amino acid residues are located near the dimer interface, suggesting that BMRF1-ΔC associates with the catalytic subunit BALF5 around the dimer interface. Consequently, the monomeric form of BMRF1-ΔC probably binds to BALF5, because the steric consequences would prevent the maintenance of the dimeric form. A distinctive feature of BMRF1-ΔC is that the dimeric and monomeric forms might be utilized for the DNA binding and replication processes, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号