首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9713篇
  免费   549篇
  10262篇
  2022年   55篇
  2021年   102篇
  2020年   55篇
  2019年   76篇
  2018年   111篇
  2017年   105篇
  2016年   180篇
  2015年   258篇
  2014年   287篇
  2013年   561篇
  2012年   457篇
  2011年   472篇
  2010年   280篇
  2009年   298篇
  2008年   445篇
  2007年   437篇
  2006年   386篇
  2005年   425篇
  2004年   399篇
  2003年   403篇
  2002年   397篇
  2001年   357篇
  2000年   382篇
  1999年   279篇
  1998年   124篇
  1997年   92篇
  1996年   67篇
  1995年   77篇
  1994年   75篇
  1993年   85篇
  1992年   202篇
  1991年   200篇
  1990年   202篇
  1989年   192篇
  1988年   178篇
  1987年   148篇
  1986年   118篇
  1985年   113篇
  1984年   110篇
  1983年   87篇
  1982年   78篇
  1981年   68篇
  1979年   87篇
  1978年   64篇
  1977年   64篇
  1976年   58篇
  1975年   60篇
  1974年   59篇
  1973年   56篇
  1972年   63篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Imaging the dynamics of proteins in living cells is a powerful means for understanding cellular functions at a deeper level. Here, we report a versatile method for spatiotemporal imaging of specific endogenous proteins in living mammalian cells. The method employs a bifunctional aptamer capable of selective protein recognition and fluorescent probe-binding, which is induced only when the aptamer specifically binds to its target protein. An aptamer for β-actin protein preferentially recognizes its monomer forms over filamentous forms, resulting in selective G-actin staining in both fixed and living cells. Through actin-drug treatment, the method permitted direct monitoring of the intracellular concentration change of endogenous G-actin. This protein-labeling method, which is highly selective and non-covalent, provides rich insights into the study of spatiotemporal protein dynamics in living cells.  相似文献   
992.
993.
We have identified the following events during the late stage in the mother cell in Bacillus subtilis: spore detachment from the polar site of the mother cell, membrane rupture, cell wall collapse, and release of the free spore. The membrane rupture was followed by mother cell lysis. Moreover, we found that NucB, an extracellular nuclease, is involved in DNA degradation after mother cell lysis.  相似文献   
994.
Identifying characteristics of foraging activity is fundamental to understanding an animals’ lifestyle and foraging ecology. Despite its importance, monitoring the foraging activities of marine animals is difficult because direct observation is rarely possible. In this study, we use an animal-borne imaging system and three-dimensional data logger simultaneously to observe the foraging behaviour of large juvenile and adult sized loggerhead turtles (Caretta caretta) in their natural environment. Video recordings showed that the turtles foraged on gelatinous prey while swimming in mid-water (i.e., defined as epipelagic water column deeper than 1 m in this study). By linking video and 3D data, we found that mid-water foraging events share the common feature of a marked deceleration phase associated with the capture and handling of the sluggish prey. Analysis of high-resolution 3D movements during mid-water foraging events, including presumptive events extracted from 3D data using deceleration in swim speed as a proxy for foraging (detection rate = 0.67), showed that turtles swam straight toward prey in 171 events (i.e., turning point absent) but made a single turn toward the prey an average of 5.7±6.0 m before reaching the prey in 229 events (i.e., turning point present). Foraging events with a turning point tended to occur during the daytime, suggesting that turtles primarily used visual cues to locate prey. In addition, an incident of a turtle encountering a plastic bag while swimming in mid-water was recorded. The fact that the turtle’s movements while approaching the plastic bag were analogous to those of a true foraging event, having a turning point and deceleration phase, also support the use of vision in mid-water foraging. Our study shows that integrated video and high-resolution 3D data analysis provides unique opportunities to understand foraging behaviours in the context of the sensory ecology involved in prey location.  相似文献   
995.
Many fundamental cellular and extracellular processes in the body are mediated by enzymes. At the single molecule level, enzyme activity is influenced by mechanical forces. However, the effects of mechanical forces on the kinetics of enzymatic reactions in complex tissues with intact extracellular matrix (ECM) have not been identified. Here we report that physiologically relevant macroscopic mechanical forces modify enzyme activity at the molecular level in the ECM of the lung parenchyma. Porcine pancreatic elastase (PPE), which binds to and digests elastin, was fluorescently conjugated (f-PPE) and fluorescent recovery after photobleach was used to evaluate the binding kinetics of f-PPE in the alveolar walls of normal mouse lungs. Fluorescent recovery after photobleach indicated that the dissociation rate constant (koff) for f-PPE was significantly larger in stretched than in relaxed alveolar walls with a linear relation between koff and macroscopic strain. Using a network model of the parenchyma, a linear relation was also found between koff and microscopic strain on elastin fibers. Further, the binding pattern of f-PPE suggested that binding sites on elastin unfold with strain. The increased overall reaction rate also resulted in stronger structural breakdown at the level of alveolar walls, as well as accelerated decay of stiffness and decreased failure stress of the ECM at the macroscopic scale. These results suggest an important role for the coupling between mechanical forces and enzyme activity in ECM breakdown and remodeling in development, and during diseases such as pulmonary emphysema or vascular aneurysm. Our findings may also have broader implications because in vivo, enzyme activity in nearly all cellular and extracellular processes takes place in the presence of mechanical forces.  相似文献   
996.
Angiopoietin and Tie signaling pathways in vascular development.   总被引:23,自引:0,他引:23  
S Loughna  T N Sato 《Matrix biology》2001,20(5-6):319-325
The angiopoietin ligands and Tie receptors belong to a novel class of ligand/receptor families, which play critical roles in blood vessel formation. They are considered to control numerous signaling pathways that are involved in diverse cellular processes, such as cell migration, proliferation and survival, and reorganization of the actin cytoskeleton. In this review, we summarize the important biochemical and biological properties of this interesting ligand/receptor family. Particular emphasis will be made on potential downstream targets and consequences of the endothelial cell behavior, due to regulation by the angiopoietin/Tie pathway.  相似文献   
997.
A structure consisting of substituted hydantoin linked to a 5-(halophenyl)furan-2-yl group via an amide bond was identified as a promising scaffold for development of low-molecular-weight therapeutic agents to treat vascular dysfunction, including ischemia/reperfusion injury. Among the compounds synthesized, 5-(3,5-dichlorophenyl)-N-{2,4-dioxo-3-[(pyridin-3-yl)methyl]imidazolidin-1-yl}-2-furamide (17) possessed the most potent inhibitory activity against Ca2+-induced mitochondrial swelling. The structural development, synthesis and structure–activity relationship of these compounds are described.  相似文献   
998.
Food intake profoundly affects systemic physiology. A large body of evidence has indicated a link between food intake and circadian rhythms, and ~24‐h cycles are deemed essential for adapting internal homeostasis to the external environment. Circadian rhythms are controlled by the biological clock, a molecular system remarkably conserved throughout evolution. The circadian clock controls the cyclic expression of numerous genes, a regulatory program common to all mammalian cells, which may lead to various metabolic and physiological disturbances if hindered. Although the circadian clock regulates multiple metabolic pathways, metabolic states also provide feedback on the molecular clock. Therefore, a remarkable feature is reprogramming by nutritional challenges, such as a high‐fat diet, fasting, ketogenic diet, and caloric restriction. In addition, various factors such as energy balance, histone modifications, and nuclear receptor activity are involved in the remodeling of the clock. Herein, we review the interaction of dietary components with the circadian system and illustrate the relationships linking the molecular clock to metabolism and critical roles in the remodeling process.  相似文献   
999.
The endogenous trans-acting small interfering RNA (ta-siRNA) pathway plays a conserved role in adaxial-abaxial patterning of lateral organs in simple-leafed plant species. However, its function in compound-leafed species is largely unknown. Using the compound-leafed species Lotus japonicus, we identified and characterized two independent mutants, reduced leaflet1 (rel1) and rel3, whose most conspicuous defects in compound leaves are abaxialized leaflets and reduction in leaflet number. Concurrent mutations in REL genes also compromise flower development and result in radial symmetric floral organs. Positional cloning revealed that REL1 and REL3 encode the homologs of Arabidopsis (Arabidopsis thaliana) SUPPRESSOR OF GENE SILENCING3 and ARGONAUTE7/ZIPPY, respectively, which are key components of the ta-siRNA pathway. These observations, together with the expression and functional data, demonstrated that the ta-siRNA pathway plays conserved yet distinct roles in the control of compound leaf and flower development in L. japonicus. Moreover, the phenotypic alterations of lateral organs in ta-siRNA-deficient mutants and the regulation of downstream targets by the ta-siRNA pathway in L. japonicus were similar to those in the monocots but different from Arabidopsis, indicating many parallels between L. japonicus and the monocots in the control of lateral organ development by the ta-siRNA pathway.Plant endogenous small RNAs can be categorized into microRNAs (miRNAs) and small interfering RNAs (siRNAs) according to their mechanism of biogenesis (Vaucheret, 2006). trans-Acting siRNAs (ta-siRNAs) are one type of siRNA, and their biogenesis requires several key components, such as SUPPRESSOR OF GENE SILENCING3 (SGS3), RNA-DEPENDENT RNA POLYMERASE6 (RDR6), DICER-LIKE4 (DCL4), ARGONAUTE7 (AGO7)/ZIPPY (ZIP), and dsRNA-BINDING4 (Peragine et al., 2004; Vazquez et al., 2004; Gasciolli et al., 2005; Xie et al., 2005; Yoshikawa et al., 2005; Adenot et al., 2006; Nakazawa et al., 2007). Recent studies revealed that the ta-siRNA pathway is integrated into different processes of plant development, such as vegetative phase transition in Arabidopsis (Arabidopsis thaliana; Hunter et al., 2003; Peragine et al., 2004; Xie et al., 2005; Nakazawa et al., 2007) and shoot apical meristem (SAM) initiation in rice (Oryza sativa; Satoh et al., 1999; Itoh et al., 2000; Nagasaki et al., 2007). Parallel studies of this pathway in simple-leafed species also showed that the ta-siRNA pathway plays critical roles in patterning of leaves and floral organs.In flowering plants, leaves and flowers are produced on the periphery of the apical meristem. These lateral organs are structurally asymmetric with regard to the apical meristem. The adaxial side is adjacent to the meristem, while the abaxial side is away from the meristem. The ta-siRNA pathway was found to play a conserved role in specifying the adaxial identity of lateral organs in both monocots and dicots, but defects in the ta-siRNA pathway caused more severe phenotypes in monocots than in dicot Arabidopsis. In Arabidopsis, no clear leaf polarity defects were detected in the ta-siRNA-defective mutants. However, blocking the ta-siRNA pathway in asymmetric1 (as1) or as2 background, which are regulators of leaf adaxial identity (Lin et al., 2003; Xu et al., 2003), results in enhanced adaxial-abaxial leaf defects (Li et al., 2005; Xu et al., 2006; Garcia et al., 2006). In addition, the as2rdr6 double mutants also display aberrant flowers with sepals failing to enwrap the inner whorl organs and some sepals and petals becoming needle-like structures (Li et al., 2005). In maize (Zea mays), mutations in LEAFBLADELESS1 (LBL1), which encodes the Arabidopsis SGS3 ortholog, give rise to abnormal leaves with partial or complete loss of adaxial cell identity (Timmermans et al., 1998; Nogueira et al., 2007). In severe lbl1 mutants, leaf-like lateral organs of inflorescences and flowers develop as symmetric, thread-like organs, and the immature ear is exposed and arrested in development (Timmermans et al., 1998). In rice, the osdcl4-1 mutants display an abaxialized epidermis in coleoptiles and in the first leaf, and knockdown of OsDCL4 can lead to the awn-like lemma with a radial abaxialized identity and the stamens and carpel not enwrapped by the lemma and pelea (Liu et al., 2007). Transgenic rice plants with ectopic expression of SHOOTLESS4 (SHL4), the homolog of Arabidopsis AGO7, exhibit partially adaxialized leaves (Nagasaki et al., 2007; Shi et al., 2007).In addition to the ta-siRNA pathway, other components have also been shown to be involved in the adaxial-abaxial patterning of lateral organs. The Antirrhinum majus PHANTASTICA (PHAN) gene (Waites et al., 1998; Byrne et al., 2000; Xu et al., 2003; Qi et al., 2004), which is the ortholog of Arabidopsis AS1, and CLASS III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP III) gene family members (McConnell et al., 2001; Emery et al., 2003) contribute to adaxial pattern formation of lateral organs, whereas members of YABBY (YAB; Sawa et al., 1999; Siegfried et al., 1999) and KANADI (Eshed et al., 2001; Kerstetter et al., 2001) gene families, AUXIN RESPONSE FACTOR3 (ARF3) and ARF4 (Pekker et al., 2005), and the miRNAs miR165/166 (Emery et al., 2003; Eshed et al., 2004; Mallory et al., 2004) are required for specifying abaxial identity. How the activities of these adaxial and abaxial determinants are coordinated has been extensively studied. It was found that ARF3 and ARF4 are regulated by the TAS3 ta-siRNA, and this regulation is conserved in both monocots and dicots (Allen et al., 2005; Williams et al., 2005). Recent studies in Arabidopsis suggest that ta-siRNAs act in a non-cell-autonomous manner to spatially restrict ARF activity (Chitwood et al., 2009; Schwab et al., 2009).In contrast to simple leaves with their single lamina, compound leaves are composed of one petiole and several leaflets. It is found that genes required for the adaxial-abaxial patterning of lateral organs in simple-leafed species also play critical roles in compound-leafed species, but these genes play multiple roles in compound leaf development. In tomato (Solanum lycopersicum), down-regulation of PHAN ortholog disturbs the leaf polarity as well as leaflet formation (Kim et al., 2003). Extensive studies of the PHAN expression in diverse compound-leafed species suggest that the function of PHAN in maintaining leaf adaxial identity is associated with leaflet formation in compound leaves and reduced adaxial identity of leaf primordia by down-regulation of PHAN could change pinnate compound leaves into palmate leaves (Kim et al., 2003). In pea (Pisum sativum), the role of PHAN in compound leaf development has also been elucidated by characterization of the phan mutant crispa (cri; Tattersall et al., 2005). However, unlike antisense PHAN transgenic tomato leaves, the cri mutant has the individual leaflet abaxialized, rather than the whole leaf. The number of lateral organs on the cri mutant compound leaves, including leaflets, is not altered, and the leaves remain pinnate. Apart from leaf development, the cri mutation also affects flower development. Although the floral organ identity and organ number are not altered, the laminar floral organ display abaxialized identity (Tattersall et al., 2005).The ta-siRNA pathway plays a critical role in simple-leafed species, but its role in compound-leafed species is not understood. Here, we address this question by analyzing loss-of-function reduced leaflet (rel1) and rel3 mutants in the compound-leafed species Lotus japonicus. Phenotypic characterization shows compound leaves of rel mutants exhibit a conspicuous disturbance in leaflet polarity as well as reduction in leaflet number. Besides the abnormal compound leaves, flower development is also severely affected in rel mutants, showing radial symmetric petals. REL1 and REL3 were identified by map-based cloning and were shown to be homologs of Arabidopsis SGS3 and AGO7, respectively. REL1 and REL3 act in the same genetic pathway and are both required for the biogenesis of TAS3 ta-siRNA. Further investigation reveals that the homolog of the Arabidopsis ARF3 is duplicated in the L. japonicus genome and that the duplicate ARF3 homologs and the ARF4 homolog are all negatively regulated by the ta-siRNA pathway. Furthermore, we found that the expression of LjYAB1, a homolog of Arabidopsis YAB1, was decreased in rel mutants, which may be associated with the reduced lamina.Taken together, our data reveal that the ta-siRNA pathway is integrated into the regulatory networks in the control of lateral organ development in L. japonicus and further emphasize the importance of the ta-siRNA pathway in compound leaf development. Moreover, our results also indicate many parallels between L. japonicus and monocots for the ta-siRNA pathway in the regulation of lateral organs.  相似文献   
1000.
A series of 5,5-dimethylthiohydantoin derivatives were synthesized and evaluated for androgen receptor pure antagonistic activities for the treatment of castration-resistant prostate cancer. Since CH4933468, which we reported previously, had a problem with agonist metabolites, novel thiohydantoin derivatives were identified by applying two strategies. One was the replacement of the alkylsulfonamide moiety by a phenylsulfonamide to avoid the production of agonist metabolites. The other was the replacement of the phenyl ring with a pyridine ring to improve in vivo potency and reduce hERG affinity. Pharmacological assays indicated that CH5137291 (17b) was a potent AR pure antagonist which did not produce the agonist metabolite. Moreover, CH5137291 completely inhibited in vivo tumor growth of LNCaP-BC2, a castration-resistant prostate cancer model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号