首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   13篇
  国内免费   4篇
  2022年   2篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   6篇
  2015年   9篇
  2014年   11篇
  2013年   14篇
  2012年   14篇
  2011年   12篇
  2010年   12篇
  2009年   9篇
  2008年   10篇
  2007年   6篇
  2006年   8篇
  2005年   10篇
  2004年   7篇
  2003年   5篇
  2002年   5篇
  2001年   8篇
  2000年   7篇
  1999年   2篇
  1998年   6篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1985年   2篇
  1983年   4篇
  1978年   2篇
  1973年   1篇
排序方式: 共有202条查询结果,搜索用时 31 毫秒
51.
52.
Ascorbate peroxidase isoforms localized in the stroma and thylakoid of higher plant chloroplasts are rapidly inactivated by hydrogen peroxide if the second substrate, ascorbate, is depleted. However, cytosolic and microbody-localized isoforms from higher plants as well as ascorbate peroxidase B, an ascorbate peroxidase of a red alga Galdieria partita, are relatively tolerant. We constructed various chimeric ascorbate peroxidases in which regions of ascorbate peroxidase B, from sites internal to the C-terminal end, were exchanged with corresponding regions of the stromal ascorbate peroxidase of spinach. Analysis of these showed that a region between residues 245 and 287 was involved in the inactivation by hydrogen peroxide. A 16-residue amino acid sequence (249-264) found in this region of the stromal ascorbate peroxidase was not found in other ascorbate peroxidase isoforms. A chimeric ascorbate peroxidase B with this sequence inserted was inactivated by hydrogen peroxide within a few minutes. The sequence forms a loop that binds noncovalently to heme in cytosolic ascorbate peroxidase of pea but does not bind to it in stromal ascorbate peroxidase of tobacco, and binds to cations in both ascorbate peroxidases. The higher susceptibility of the stromal ascorbate peroxidase may be due to a distorted interaction of the loop with the cation and/or the heme.  相似文献   
53.
Arabidopsis thaliana contains eight glutathione peroxidase (GPX) homologs (AtGPX1-8). Four mature GPX isoenzymes with different subcellular distributions, AtGPX1, -2, -5 and -6, were overexpressed in Escherichia coli and characterized. Interestingly, these recombinant proteins were able to reduce H2O2, cumene hydroperoxide, phosphatidylcholine and linoleic acid hydroperoxides using thioredoxin but not glutathione or NADPH as an electron donor. The reduction activities of the recombinant proteins with H2O2 were 2-7 times higher than those with cumene hydroperoxide. Km values for thioredoxin and H2O2 were 2.2-4.0 and 14.0-25.4 microM, respectively. These finding suggest that GPX isoenzymes may function to detoxify H2O2 and organic hydroperoxides using thioredoxin in vivo and may also be involved in regulation of the cellular redox homeostasis by maintaining the thiol/disulfide or NADPH/NADP balance.  相似文献   
54.
Glutamate dehydrogenase (GDH) and glutamine synthetase (GS)-glutamine 2-oxoglutarate-aminotransferase (GOGAT) represent the two main pathways of ammonium assimilation in Corynebacterium glutamicum. In this study, the ammonium assimilating fluxes in vivo in the wild-type ATCC 13032 strain and its GDH mutant were quantitated in continuous cultures. To do this, the incorporation of 15N label from [15N]ammonium in glutamate and glutamine was monitored with a time resolution of about 10 min with in vivo 15N nuclear magnetic resonance (NMR) used in combination with a recently developed high-cell-density membrane-cyclone NMR bioreactor system. The data were used to tune a standard differential equation model of ammonium assimilation that comprised ammonia transmembrane diffusion, GDH, GS, GOGAT, and glutamine amidotransferases, as well as the anabolic incorporation of glutamate and glutamine into biomass. The results provided a detailed picture of the fluxes involved in ammonium assimilation in the two different C. glutamicum strains in vivo. In both strains, transmembrane equilibration of 100 mM [15N]ammonium took less than 2 min. In the wild type, an unexpectedly high fraction of 28% of the NH4+ was assimilated via the GS reaction in glutamine, while 72% were assimilated by the reversible GDH reaction via glutamate. GOGAT was inactive. The analysis identified glutamine as an important nitrogen donor in amidotransferase reactions. The experimentally determined amount of 28% of nitrogen assimilated via glutamine is close to a theoretical 21% calculated from the high peptidoglycan content of C. glutamicum. In the GDH mutant, glutamate was exclusively synthesized over the GS/GOGAT pathway. Its level was threefold reduced compared to the wild type.  相似文献   
55.
56.
Arginine residues of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were chemically modified with phenylglyoxal (PhG). PhG inactivated Rubisco with a half-time of 20-25 min. An inclusion of a catalytic product, 3-phosphoglycerate (PGA), protected Rubisco from inactivation and delayed the half-time to 60-90 min. Peptide mapping and sequencing of Rubisco modified for 60 min with radiolabeled PhG in the presence of 10mM PGA revealed that Arg187, Arg258, and Arg431 of the large subunit were modified. The extent and rate of the decline in activity during catalysis (fallover phenomenon) were reduced by the modification. This is the first report identifying PhG-modified arginine residues and to demonstrate the effect of the modification of arginine residues on the kinetics of fallover.  相似文献   
57.
Alternative splicing events in the 3'-terminal region of chloroplast ascorbate peroxidase (chlAPX) pre-mRNA in spinach and tobacco, which produced four types of mRNA variants, one form (tAPX-I) encoding thylakoid-bound APX (tAPX) and three forms (sAPX-I, -II, and -III) encoding stromal APX (sAPX), were regulated in a tissue-specific manner. The ratio of the level of sAPX mRNAs (sAPX-I, -II, and -III) to tAPX-I mRNA was close to 1 in leaf, whereas the ratio in root was greatly elevated due to an increase in sAPX-III and a decrease in tAPX-I resulting from the alternative excision of intron 11 and intron 12, respectively. A putative splicing regulatory cis element (SRE), which is highly conserved in the sequences of chlAPX genes of higher plants, was identified upstream of the acceptor site in intron 12. The deletion of the SRE sequence diminished the splicing efficiency of intron 12 in tobacco leaf in vivo. Gel-shift analysis showed that SRE interacts strongly with a nuclear protein from leaves but not those from the roots of spinach and tobacco. These results indicate that the tissue-specific alternative splicing of chlAPX pre-mRNA is regulated by the splicing enhancer SRE.  相似文献   
58.
cDNAs encoding two cytosolic and two chloroplastic ascorbateperoxidase (AsAP) isozymes from spinach have been cloned recently[Ishikawa et al. (1995) FEBS Lett. 367: 28, (1996) FEBS Lett.384: 289]. We herein report the cloning of the fifth cDNA ofan AsAP isozyme which localizes in spinach glyoxysomes (gAsAP).The open reading frame of the 858-base pair cDNA encoded 286amino acid residues with a calculated molecular mass of 31,507Da. By determination of the latency of AsAP activity in intactglyoxysomes, the enzyme, as well as monodehydroascorbate (MDAsA)reductase, was found to be located on the external side of theorganelles. The cDNA was overexpressed in Escherichia coli (E.coli). The enzymatic properties of the partially purified recombinantgAsAP were consistent with those of the native enzyme from intactglyoxysomes. The recombinant enzyme utilized ascorbate (AsA)as its most effective natural electron donor; glutathione (GSH)and NAD(P)H could not substitute for AsA. The substrate-velocitycurves with the recombinant enzyme showed Michaelis-Menten typekinetics with AsA and hydrogen peroxide (H2O2); the apparentKm values for AsA and H2O2were 1.89±0.05 mM and 74±4.0µM,respectively. When the recombinant enzyme was diluted with AsA-depletedmedium, the activity was stable over 180 min. We discuss theH2O2-scavenging system maintained by AsAP and the regenerationsystem of AsA in spinach glyoxysome. 1Present address: Department of Biochemistry, Wakayama MedicalCollege, 27 Kyubancho, Wakayama, 640 Japan  相似文献   
59.
Phosphoglucomutase (EC 2.7.5.1, PGM) was purified to homogeneity from maize (Zea mays L.) leaves. The enzyme had specific activity 11. 7 U/mg protein and molecular mass (determined by gel-chromatography) of 133 +/- 4 kD. The molecular mass of PGM subunits determined by SDS-electrophoresis was 66 +/- 3 kD. The enzyme had Km for glucose-1-phosphate and glucose-1,6-diphosphate of 20.0 +/- 0.9 and 16.0 +/- 0.8 &mgr;M, respectively. Concentrations of glucose-1-phosphate and glucose-1,6-diphosphate above 3 and 0.4 mM, respectively, cause substrate inhibition. The enzyme activity was maximal at pH 8.0 and temperature 35 degreesC. Magnesium ions activate the enzyme and manganese ions inhibit it. 3-Phosphoglycerate is an uncompetitive inhibitor of the enzyme (Ki = 1.22 +/- 0.05 mM). Fructose-6-phosphate, 6-phosphogluconate, and ADP activate PGM, whereas ATP, UTP, and AMP inhibit the enzyme. Citrate was also a potent inhibitor, inhibitory effects of isocitrate and cis-aconitate being less pronounced.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号