首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1536篇
  免费   80篇
  国内免费   1篇
  2021年   10篇
  2020年   6篇
  2019年   12篇
  2018年   17篇
  2017年   9篇
  2016年   19篇
  2015年   30篇
  2014年   37篇
  2013年   141篇
  2012年   67篇
  2011年   62篇
  2010年   46篇
  2009年   44篇
  2008年   91篇
  2007年   86篇
  2006年   103篇
  2005年   86篇
  2004年   104篇
  2003年   118篇
  2002年   81篇
  2001年   26篇
  2000年   18篇
  1999年   15篇
  1998年   30篇
  1997年   23篇
  1996年   17篇
  1995年   18篇
  1994年   13篇
  1993年   7篇
  1992年   22篇
  1991年   13篇
  1990年   19篇
  1989年   22篇
  1988年   21篇
  1987年   18篇
  1986年   11篇
  1985年   9篇
  1984年   11篇
  1983年   10篇
  1982年   18篇
  1981年   17篇
  1980年   12篇
  1979年   7篇
  1978年   8篇
  1977年   6篇
  1975年   6篇
  1973年   7篇
  1971年   5篇
  1969年   5篇
  1968年   5篇
排序方式: 共有1617条查询结果,搜索用时 718 毫秒
111.
112.
113.
114.
We isolated stable cell lines, designated as mitochondrial cells, from cybrids obtained by fusing mitochondria-less HeLa cells with platelets from patients with Leigh syndrome, a subtype of mitochondrial encephalomyopathy. The cells contain a pathogenic point mutation, T9176C, in the mitochondrial DNA. Hematoxylin-eosin staining, confocal fluorescent microscopy and flow cytometry in fixed or living cells showed that the majority of these mitochondrial cells lack nuclear DNA and nuclei, but contain active mitochondria. Despite the absence of nuclear DNA, these cells can be continuously generated in culture. Therefore, it is likely that they arise from the minority of cells which possess a nucleus.  相似文献   
115.
Lignostilbene-alpha,beta-dioxygenase (LSD, EC 1.13.11.43) is involved in oxidative cleavage of the central double bond of lignostilbene to form the corresponding aldehydes by a mechanism similar to those of 9-cis-epoxycarotenoid dioxygenase and beta-carotene 15,15'-dioxygenase, key enzymes in abscisic acid biosynthesis and vitamin A biosynthesis, respectively. In this study, several N-benzylideneanilines and amine were synthesized and examined for their efficacy as inhibitors of LSD. N-(4-Hydroxybenzylidene)-3-methoxyaniline was found to be a potent inhibitor with IC50 = 0.3 microM and N-(4-hydroxybenzyl)-3-methoxyaniline was also active with IC50 = 10 microM. The information obtained from the structure-activity relationships study here can aid in discovering inhibitors of both abscisic acid and vitamin A biosynthesis.  相似文献   
116.
117.
Systemic acquired resistance (SAR) is a potent innate immunity system in plants that is induced through the salicylic acid-mediated pathway. N-cyanomethyl-2-chloroisonicotinamide (NCI) is able to induce a broad range of disease resistance in tobacco and rice and induces SAR marker gene expression without SA accumulation in tobacco. To clarify the detailed mode of action of NCI, we analyzed its ability to induce defense gene expression and resistance in Arabidopsis mutants that are defective in various defense signaling pathways. Wild-type Arabidopsis treated with NCI exhibited increased expression of several pathogenesis-related genes and enhanced resistance to the bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. NCI induced disease resistance and PR gene expression in NahG transgenic plants, but not in the npr1 mutant. NCI could induce PR gene expression in the etr1-1, ein2-1 and jar1-1 mutants. Thus, NCI activates SAR, independently from ethylene and jasmonic acid, by stimulating the site between SA and NPR1.  相似文献   
118.
119.
Abscisic acid (ABA) is a phytohormone that plays a key role as a stress signal, regulating water relations during drought conditions, by inducing stomatal closure. However, to date, no putative ABA receptor(s) has been reported at the protein sequence, gene family, or cellular localization levels. We used biotinylated ABA (bioABA) to characterize the ABA-perception sites in the stomatal guard cells of Vicia faba. Treatment with bioABA induced stomatal closure and shrinkage of guard cell protoplasts (GCPs). The ABA-perception sites were visualized by fluorescence microscopy and confocal laser scanning microscopy (CLSM), using bioABA and fluorescence-labeled avidin. Fluorescent particles were observed in patches on the surface of the GCPs. Fluorescence intensity was quantified by flow cytometry (FCM) as well as by CLSM. Binding of bioABA was inhibited by ABA in a dose-dependent manner. Pre-treatment of GCPs with proteinase K also blocked the binding of bioABA. Binding of bioABA was inhibited by RCA-7a, an ABA analog that induces stomatal closure, but not by RCA-16, which has no effect on stomatal aperture. Another ABA analog, PBI-51, inhibited ABA-induced stomatal closure. This ABA antagonist also inhibited binding of bioABA to the GCPs. These results suggest that ABA is perceived on the plasma membrane of stomatal guard cells, and that the present experimental methods constitute valuable tools for characterizing the nature of the ABA receptor(s) that perceives physiological ABA signals. These imaging studies allow us to demonstrate the spatial distribution of the ABA-perception sites. Visualization of the ABA-perception sites provides new insights into the nature of membrane-associated ABA receptor(s).  相似文献   
120.
Peroxidizing herbicides inhibit protoporphyrinogen oxidase (Protox), the last enzyme of the common branch of the chlorophyll- and heme-synthesis pathways. There are two isoenzymes of Protox, one of which is located in the plastid and the other in the mitochondria. Sequence analysis of the cloned Protox cDNAs showed that the deduced amino acid sequences of plastidial and mitochondrial Protox in wild-type cells and in herbicide-resistant YZI-1S cells are the same. The level of plastidial Protox mRNA was the same in both wild-type and YZI-1S cells, whereas the level of mitochondrial Protox mRNA YZI-1S cells was up to 10 times the level of wild-type cells. Wild-type cells were observed by fluorescence microscopy to emit strong autofluorescence from chlorophyll. Only a weak fluorescence signal was observed from chlorophyll in YZI-1S cells grown in the Protox inhibitor N-(4-chloro-2-fluoro-5-propagyloxy)-phenyl-3,4,5,6-tetrahydrophthalimide. Staining with DiOC6 showed no visible difference in the number or strength of fluorescence between wild-type and YZI-1S mitochondria. Electron micrography of YZI-1S cells showed that, in contrast to wild-type cells, the chloroplasts of YZI-1S cells grown in the presence of N-(4-chloro-2-fluoro-5-propagyloxy)-phenyl-3,4,5,6-tetrahydrophthalimide exhibited no grana stacking. These results suggest that the herbicide resistance of YZI-1S cells is due to the overproduction of mitochondrial Protox.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号