首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3340篇
  免费   217篇
  国内免费   1篇
  2021年   24篇
  2020年   26篇
  2019年   27篇
  2018年   37篇
  2017年   21篇
  2016年   54篇
  2015年   84篇
  2014年   97篇
  2013年   239篇
  2012年   154篇
  2011年   152篇
  2010年   95篇
  2009年   92篇
  2008年   159篇
  2007年   182篇
  2006年   213篇
  2005年   168篇
  2004年   191篇
  2003年   190篇
  2002年   156篇
  2001年   96篇
  2000年   79篇
  1999年   79篇
  1998年   36篇
  1997年   38篇
  1996年   28篇
  1995年   23篇
  1994年   23篇
  1993年   19篇
  1992年   61篇
  1991年   38篇
  1990年   46篇
  1989年   53篇
  1988年   40篇
  1987年   38篇
  1986年   30篇
  1985年   31篇
  1984年   33篇
  1983年   33篇
  1982年   30篇
  1981年   32篇
  1980年   19篇
  1979年   24篇
  1978年   26篇
  1977年   22篇
  1975年   20篇
  1974年   25篇
  1973年   22篇
  1972年   23篇
  1970年   19篇
排序方式: 共有3558条查询结果,搜索用时 390 毫秒
111.
112.

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated endonuclease 9 (Cas9) system is being rapidly developed for mutagenesis in higher plants. Ideally, foreign DNA introduced by this system is removed in the breeding of edible crops and vegetables. Here, we report an efficient generation of Cas9-free mutants lacking an allergenic gene, Gly m Bd 30K, using biolistic transformation and the CRISPR/Cas9 system. Five transgenic embryo lines were selected on the basis of hygromycin resistance. Cleaved amplified polymorphic sequence analysis detected only two different mutations in e all of the lines. These results indicate that mutations were induced in the target gene immediately after the delivery of the exogenous gene into the embryo cells. Soybean plantlets (T0 plants) were regenerated from two of the transgenic embryo lines. The segregation pattern of the Cas9 gene in the T1 generation, which included Cas9-free plants, revealed that a single copy number of transgene was integrated in both lines. Immunoblot analysis demonstrated that no Gly m Bd 30K protein accumulated in the Cas9-free plants. Gene expression analysis indicated that nonsense mRNA decay might have occurred in mature mutant seeds. Due to the efficient induction of inheritable mutations and the low integrated transgene copy number in the T0 plants, we could remove foreign DNA easily by genetic segregation in the T1 generation. Our results demonstrate that biolistic transformation of soybean embryos is useful for CRISPR/Cas9-mediated site-directed mutagenesis of soybean for human consumption.

  相似文献   
113.
114.
Abstract

Triplex-stabilizing effect of a graft copolymer under physiologically relevant conditions has been evaluated and compared with other polyamines. Here we show that the graft copolymer significantly stabilizes triplex DNAs with amazingly higher efficicacy than that of physiological concentrations of spermine and spermidine.  相似文献   
115.
Abstract

9-Cyclobutyladenines bearing both methylene and hydroxymethyl groups, 3 and 4, were prepared by dehydration of carbocyclic oxetanocin A (1a). Introduction of a double bond into cyclobutane ring was achieved by allylic oxidation of N 6-benzoyl-9-[3-methylenecyclobutyl]adenine (12), which after several steps, afforded 9-[3-(hydroxy-methyl)-2-cyclobutenyl)adenine (5).  相似文献   
116.
An agar-degrading archaeon Halococcus sp. 197A was isolated from a solar salt sample. The agarase was purified by hydrophobic column chromatography using a column of TOYOPEARL Phenyl-650 M. The molecular mass of the purified enzyme, designated as Aga-HC, was ~55 kDa on both SDS-PAGE and gel-filtration chromatography. Aga-HC released degradation products in the order of neoagarohexose, neoagarotetraose and small quantity of neoagarobiose, indicating that Aga-HC was a β-type agarase. Aga-HC showed a salt requirement for both stability and activity, being active from 0.3 M NaCl, with maximal activity at 3.5 M NaCl. KCl supported similar activities as NaCl up to 3.5 M, and LiCl up to 2.5 M. These monovalent salts could not be substituted by 3.5 M divalent cations, CaCl2 or MgCl2. The optimal pH was 6.0. Aga-HC was thermophilic, with optimum temperature of 70 °C. Aga-HC retained approximately 90 % of the initial activity after incubation for 1 hour at 65–80 °C, and retained 50 % activity after 1 hour at 95 °C. In the presence of additional 10 mM CaCl2, approximately 17 % remaining activity was detected after 30 min at 100 °C. This is the first report on agarase purified from Archaea.  相似文献   
117.
Cell polarity plays a critical role in neuronal differentiation during development of the central nervous system (CNS). Recent studies have established the significance of atypical protein kinase C (aPKC) and its interacting partners, which include PAR-3, PAR-6 and Lgl, in regulating cell polarization during neuronal differentiation. However, their roles in neuronal maintenance after CNS development remain unclear. Here we performed conditional deletion of aPKCλ, a major aPKC isoform in the brain, in differentiated neurons of mice by camk2a-cre or synapsinI-cre mediated gene targeting. We found significant reduction of aPKCλ and total aPKCs in the adult mouse brains. The aPKCλ deletion also reduced PAR-6β, possibly by its destabilization, whereas expression of other related proteins such as PAR-3 and Lgl-1 was unaffected. Biochemical analyses suggested that a significant fraction of aPKCλ formed a protein complex with PAR-6β and Lgl-1 in the brain lysates, which was disrupted by the aPKCλ deletion. Notably, the aPKCλ deletion mice did not show apparent cell loss/degeneration in the brain. In addition, neuronal orientation/distribution seemed to be unaffected. Thus, despite the polarity complex disruption, neuronal deletion of aPKCλ does not induce obvious cell loss or disorientation in mouse brains after cell differentiation.  相似文献   
118.

Background

Rimmed vacuoles (RVs) are round-oval cytoplasmic inclusions, detected in muscle cells of patients with myopathies, such as inclusion body myositis (IBM) and distal myopathy with RVs (DMRV). Granulovacuolar degeneration (GVD) bodies are spherical vacuoles containing argentophilic and hematoxyphilic granules, and are one of the pathological hallmarks commonly found in hippocampal pyramidal neurons of patients with aging-related neurodegenerative diseases, such as Alzheimer''s disease and Parkinson''s disease. These diseases are common in the elderly and share some pathological features. Therefore, we hypothesized that mechanisms of vacuolar formation in RVs and GVD bodies are common despite their role in two differing pathologies. We explored the components of RVs by immunohistochemistry, using antibodies for GVD markers.

Methods

Subjects included one AD case, eight cases of sporadic IBM, and three cases of DMRV. We compared immunoreactivity and staining patterns for GVD markers. These markers included: (1) tau-modifying proteins (caspase 3, cyclin-dependent kinase 5 [CDK5], casein kinase 1δ [CK1δ], and c-jun N-terminal kinase [JNK]), (2) lipid raft-associated materials (annexin 2, leucine-rich repeat kinase 2 [LRRK2], and flotillin-1), and (3) other markers (charged multi-vesicular body protein 2B [CHMP2B] and phosphorylated transactive response DNA binding protein-43 [pTDP43]) in both GVD bodies and RVs. Furthermore, we performed double staining of each GVD marker with pTDP43 to verify the co-localization.

Results

GVD markers, including lipid raft-associated proteins and tau kinases, were detected in RVs. CHMP2B, pTDP43, caspase 3, LRRK2, annexin 2 and flotillin-1 were detected on the rim and were diffusely distributed in the cytoplasm of RV-positive fibers. CDK5, CK1δ and JNK were detected only on the rim. In double staining experiments, all GVD markers colocalized with pTDP43 in RVs.

Conclusions

These results suggest that RVs of muscle cells and GVD bodies of neurons share a number of molecules, such as raft-related proteins and tau-modifying proteins.  相似文献   
119.
The platelet aggregation-inducing factor Aggrus, also known as podoplanin, is frequently upregulated in several types of tumors and enhances hematogenous metastasis by interacting with and activating the platelet receptor CLEC-2. Thus, Aggrus–CLEC-2 binding could be a therapeutic molecular mechanism for cancer therapy. We generated a new anti-human Aggrus monoclonal antibody, MS-1, that suppressed Aggrus–CLEC-2 binding, Aggrus-induced platelet aggregation, and Aggrus-mediated tumor metastasis. Interestingly, the MS-1 monoclonal antibody attenuated the growth of Aggrus-positive tumors in vivo. Moreover, the humanized chimeric MS-1 antibody, ChMS-1, also exhibited strong antitumor activity against Aggrus-positive lung squamous cell carcinoma xenografted into NOD-SCID mice compromising antibody-dependent cellular cytotoxic and complement-dependent cytotoxic activities. Because Aggrus knockdown suppressed platelet-induced proliferation in vitro and tumor growth of the lung squamous cell carcinoma in vivo, Aggrus may be involved in not only tumor metastasis but also tumor growth by promoting platelet-tumor interaction, platelet activation, and secretion of platelet-derived factors in vivo. Our results indicate that molecular target drugs inhibiting specific platelet–tumor interactions can be developed as antitumor drugs that suppress both metastasis and proliferation of tumors such as lung squamous cell carcinoma.  相似文献   
120.
The GABAergic synapses, a primary inhibitory synapse in the mammalian brain, is important for the normal development of brain circuits, and for the regulation of the excitation-inhibition balance critical for brain function from the developmental stage throughout life. However, the molecular mechanism underlying the formation, maintenance, and modulation of GABAergic synapses is less understood compared to that of excitatory synapses. Quantum dot-single particle tracking (QD-SPT), a super-resolution imaging technique that enables the analysis of membrane molecule dynamics at single-molecule resolution, is a powerful tool to analyze the behavior of proteins and lipids on the plasma membrane. In this review, we summarize the recent application of QD-SPT in understanding of GABAergic synaptic transmission. Here we introduce QD-SPT experiments that provide further insights into the molecular mechanism supporting GABAergic synapses. QD-SPT studies revealed that glutamate and Ca2+ signaling is involved in (a) the maintenance of GABAergic synapses, (b) GABAergic long-term depression, and GABAergic long-term potentiation, by specifically activating signaling pathways unique to each phenomenon. We also introduce a novel Ca2+ imaging technique to describe the diversity of Ca2+ signals that may activate the downstream signaling pathways that induce specific biological output.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号