首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1984篇
  免费   123篇
  国内免费   1篇
  2108篇
  2021年   18篇
  2020年   8篇
  2019年   13篇
  2018年   12篇
  2017年   11篇
  2016年   24篇
  2015年   35篇
  2014年   51篇
  2013年   146篇
  2012年   85篇
  2011年   83篇
  2010年   59篇
  2009年   53篇
  2008年   107篇
  2007年   108篇
  2006年   115篇
  2005年   104篇
  2004年   129篇
  2003年   130篇
  2002年   99篇
  2001年   44篇
  2000年   27篇
  1999年   37篇
  1998年   36篇
  1997年   25篇
  1996年   21篇
  1995年   24篇
  1994年   17篇
  1993年   10篇
  1992年   48篇
  1991年   29篇
  1990年   37篇
  1989年   36篇
  1988年   41篇
  1987年   32篇
  1986年   22篇
  1985年   20篇
  1984年   15篇
  1983年   24篇
  1982年   26篇
  1981年   20篇
  1980年   17篇
  1979年   12篇
  1978年   8篇
  1975年   9篇
  1974年   7篇
  1973年   7篇
  1971年   9篇
  1968年   6篇
  1967年   6篇
排序方式: 共有2108条查询结果,搜索用时 15 毫秒
941.
Sesame peptide powder (SPP) exhibited angiotensin I-converting enzyme (ACE) inhibitory activity, and significantly and temporarily decreased the systolic blood pressure (SBP) in spontaneously hypertensive rats (SHRs) by a single administration (1 and 10 mg/kg). Six peptide ACE inhibitors were isolated and identified from SPP. The representative peptides, Leu-Val-Tyr, Leu-Gln-Pro and Leu-Lys-Tyr, could competitively inhibit ACE activity at respective Ki values of 0.92 microM, 0.50 microM, and 0.48 microM. A reconstituted sesame peptide mixture of Leu-Ser-Ala, Leu-Gln-Pro, Leu-Lys-Tyr, Ile-Val-Tyr, Val-Ile-Tyr, Leu-Val-Tyr, and Met-Leu-Pro-Ala-Tyr according to their content ratio in SPP showed a strong antihypertensive effect on SHR at doses of 3.63 and 36.3 microg/kg, which accounted for more than 70% of the corresponding dosage for the SPP-induced hypotensive effect. Repeated oral administration of SPP also lowered both SBP and the aortic ACE activity in SHR. These results demonstrate that SPP would be a beneficial ingredient for preventing and providing therapy against hypertension and its related diseases.  相似文献   
942.
In developing mammalian telencephalon, the loss of adherens junctions and cell cycle exit represent crucial steps in the differentiation of neuroepithelial cells into neurons, but the relationship between these cellular events remains obscure. Atypical protein kinase C (aPKC) is known to contribute to junction formation in epithelial cells and to cell fate determination for Drosophila neuroblasts. To elucidate the functions of aPKClambda, one out of two aPKC members, in mouse neocortical neurogenesis, a Nestin-Cre mediated conditional gene targeting system was employed. In conditional aPKClambda knockout mice, neuroepithelial cells of the neocortical region lost aPKClambda protein at embryonic day 15 and demonstrated a loss of adherens junctions, retraction of apical processes and impaired interkinetic nuclear migration that resulted in disordered neuroepithelial tissue architecture. These results are evidence that aPKClambda is indispensable for the maintenance of adherens junctions and may function in the regulation of adherens junction integrity upon differentiation of neuroepithelial cells into neurons. In spite of the loss of adherens junctions in the neuroepithelium of conditional aPKClambda knockout mice, neurons were produced at a normal rate. Therefore, we concluded that, at least in the later stages of neurogenesis, regulation of cell cycle exit is independent of adherens junctions.  相似文献   
943.
In order to search for alternatives to the sulfoxide moiety in the long side chain of pure antiestrogens, several molecules that may interact with water in a fashion similar to ICI164,384 were designed and it was found that compounds with the carboxy, the sulfamide, or the sulfonamide instead of the sulfoxide moiety also functioned as pure antiestrogens. Interestingly, the compound possessing the carboxy moiety showed superior antiestrogen activity compared to ICI182,780 when dosed orally. Results of the pharmacokinetic evaluation indicated that the potent antiestrogen activity at oral dosing attributed to both the improved absorption from the intestinal wall and the metabolic stability of the compound in liver.  相似文献   
944.
The plant hormone abscisic acid (ABA) accumulates in response to drought stress and confers stress tolerance to plants. 9-cis-Epoxycarotenoid dioxygenase (NCED), the key regulatory enzyme in the ABA biosynthesis pathway, plays an important role in ABA accumulation. Treatment of plants with abamine, the first NCED inhibitor identified, inhibits ABA accumulation. On the basis of structure-activity relationship studies of abamine, we identified an inhibitor of ABA accumulation more potent than abamine and named it abamineSG. An important structural feature of abamineSG is a three-carbon linker between the methyl ester and the nitrogen atom. Treatment of osmotically stressed plants with 100 microM abamineSG inhibited ABA accumulation by 77% as compared to the control, whereas abamine inhibited the accumulation by 35%. The expression of AB A-responsive genes and ABA catabolic genes was strongly inhibited in abamineSG-treated plants under osmotic stress. AbamineSG is a competitive inhibitor of the enzyme NCED, with a K(i) of 18.5 microM. Although the growth of Arabidopsis seedlings was inhibited by abamine at high concentrations (>50 microM), an effect that was unrelated to the inhibition of ABA biosynthesis, seedling growth was not affected by 100 microM abamineSG. These results suggest that abamineSG is a more potent and specific inhibitor of ABA biosynthesis than abamine.  相似文献   
945.
Membrane-associated guanylate kinase inverted (MAGI)-1 plays a role as a scaffold at cell junctions in non-neuronal cells, while S-SCAM, its neuronal isoform, is involved in the organization of synapses. A search for MAGI-1-interacting proteins by yeast two-hybrid screening of a kidney cDNA library yielded dendrin. As dendrin was originally reported as a brain-specific postsynaptic protein, we tested the interaction between dendrin and S-SCAM and revealed that dendrin binds to the WW domains of S-SCAM. Dendrin is known to be dendritically translated but its function is largely unknown. To gain insights into the physiological meaning of the interaction, we performed a second yeast two-hybrid screening using dendrin as a bait. We identified CIN85, an endocytic scaffold protein, as a putative dendrin-interactor. Immunocytochemistry and subcellular fractionation analysis supported the synaptic localization of CIN85. The first SH3 domain and the C-terminal region of CIN85 bind to the proline-rich region and the N-terminal region of dendrin, respectively. In vitro experiments suggest that dendrin forms a ternary complex with CIN85 and S-SCAM and that this complex formation facilitates the recruitment of dendrin and S-SCAM to vesicle-like structures where CIN85 is accumulated.  相似文献   
946.
It is believed likely that immune responses are responsible for controlling viral load and infection. In this study, when macaques were primed with plasmid DNA encoding SIV gag and pol genes (SIVgag/pol DNA) and then boosted with replication-deficient vaccinia virus DIs recombinant expressing the same genes (rDIsSIVgag/pol), this prime-boost regimen generated higher levels of Gag-specific CD4+ and CD8+ T cell responses than did either SIVgag/pol DNA or rDIsSIVgag/pol alone. When the macaques were i.v. challenged with pathogenic simian/HIV, the prime-boost group maintained high CD4+ T cell counts and reduced plasma viral loads up to 30 wk after viral challenge, whereas the rDIsSIVgag/pol group showed only a partial attenuation of the viral infection, and the group immunized with SIVgag/pol DNA alone showed none at all. The protection levels were better correlated with the levels of virus-specific T cell responses than the levels of neutralization Ab responses. These results demonstrate that a vaccine regimen that primes with DNA and then boosts with a replication-defective vaccinia virus DIs generates anti-SIV immunity, suggesting that it will be a promising vaccine regimen for HIV-1 vaccine development.  相似文献   
947.
The current quantitative study demonstrates that the recruitment of neuronal nitric oxide synthase (nNOS) beneath N-methyl-D-aspartate (NMDA) receptors, via postsynaptic density 95 (PSD-95) proteins significantly enhances nitric oxide (NO) production. Real-time single-cell fluorescence imaging was applied to measure both NO production and Ca(2+) influx in Chinese hamster ovary (CHO) cells expressing recombinant NMDA receptors (NMDA-R), nNOS, and PSD-95. We examined the relationship between the rate of NO production and Ca(2+) influx via NMDA receptors using the NO-reactive fluorescent dye, diaminofluorescein-FM (DAF-FM) and the Ca(2+)-sensitive yellow cameleon 3.1 (YC3.1), conjugated with PSD-95 (PSD-95-YC3.1). The presence of PSD-95 enhanced the rate of NO production by 2.3-fold upon stimulation with 100 microm NMDA in CHO1(+) cells (expressing NMDA-R, nNOS and PSD-95) when compared with CHO1(-) cells (expressing NMDA-R and nNOS lacking PSD-95). The presence of nNOS inhibitor or NMDA-R blocker almost completely suppressed this NMDA-stimulated NO production. The Ca(2+) concentration beneath the NMDA-R, [Ca(2+)](NR), was determined to be 5.4 microm by stimulating CHO2 cells (expressing NMDA-R and PSD-95-YC3.1) with 100 microm NMDA. By completely permealizing CHO1 cells with ionomycin, a general relationship curve of the rate of NO production versus the Ca(2+) concentration around nNOS, [Ca(2+)](NOS), was obtained over the wide range of [Ca(2+)](NOS). This sigmoidal curve had an EC(50) of approximately 1.2 microm of [Ca(2+)](NOS), implying that [Ca(2+)](NR) = 5.4 microm can activate nNOS effectively.  相似文献   
948.
Fibrous dysplasia (FD) patients sometimes suffer from concomitant hypophosphatemic rickets/osteomalacia, resulting from renal phosphate wasting. It was recently reported that FD tissue in the patients with McCune-Albright syndrome (MAS) expressed fibroblast growth factor-23 (FGF-23), which is now known to be as a pathogenic phosphaturic factor in patients with oncogenic osteomalacia and X-linked hypophosphatemic rickets. Since it remains controversial whether serum phosphate levels are influenced by FGF23 expressions in FD tissue, isolated FD patients without MAS syndrome were examined for the relationship between FGF23 expressions, circulating levels of FGF-23 and phosphate to negate the effects of MAS-associated endocrine abnormalities on serum phosphate. Eighteen paraffin embedded FD tissues and 2 frozen tissues were obtained for the study. Sixteen of 18 isolated FD tissues were successfully analyzed GNAS gene, which exhibited activated mutations observed in MAS. Eight of 16 FD tissues, which exhibited GNAS mutations, revealed positive staining for FGF-23. These evidence indicate that postzygotic activated mutations of GNAS is necessary for the FD tissue formation by mosaic distribution of mutated osteogenic cell lineage, but is not sufficient to elevate FGF23 expression causing generalized osteomalacia with severe renal phosphate wasting. The expression level of FGF23 in isolated FD tissue with hypophosphatemic osteomalacia determined by real-time PCR was abundant close to the levels in OOM tumors. Osteoblasts/osteocytes in woven bone were predominant source of circulating FGF-23 in FD tissues by immunohistochemistry. A negative correlation of the intensity of FGF-23 staining with serum inorganic phosphate levels indicated that the expression of FGF23 in focal FD tissues could be a prominent determinant of serum phosphate levels in isolated FD patient. These data provide novel insights into the regulatory mechanism of serum inorganic phosphate levels in isolated FD patients and extend the notion that FGF-23 originating from FD tissue may cause hypophosphatemia not only in isolated FD patients but also in the patients with MAS syndrome.  相似文献   
949.
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号