首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1984篇
  免费   123篇
  国内免费   1篇
  2108篇
  2021年   18篇
  2020年   8篇
  2019年   13篇
  2018年   12篇
  2017年   11篇
  2016年   24篇
  2015年   35篇
  2014年   51篇
  2013年   146篇
  2012年   85篇
  2011年   83篇
  2010年   59篇
  2009年   53篇
  2008年   107篇
  2007年   108篇
  2006年   115篇
  2005年   104篇
  2004年   129篇
  2003年   130篇
  2002年   99篇
  2001年   44篇
  2000年   27篇
  1999年   37篇
  1998年   36篇
  1997年   25篇
  1996年   21篇
  1995年   24篇
  1994年   17篇
  1993年   10篇
  1992年   48篇
  1991年   29篇
  1990年   37篇
  1989年   36篇
  1988年   41篇
  1987年   32篇
  1986年   22篇
  1985年   20篇
  1984年   15篇
  1983年   24篇
  1982年   26篇
  1981年   20篇
  1980年   17篇
  1979年   12篇
  1978年   8篇
  1975年   9篇
  1974年   7篇
  1973年   7篇
  1971年   9篇
  1968年   6篇
  1967年   6篇
排序方式: 共有2108条查询结果,搜索用时 15 毫秒
161.
162.
Amyloid fibril formation is associated with various amyloidoses, including neurodegenerative diseases such as Alzheimer''s and Parkinson''s diseases. Amyloid fibrils form above the solubility of amyloidogenic proteins or peptides upon breaking supersaturation, followed by a nucleation and elongation mechanism, which is similar to the crystallization of solutes. Many additives, including salts, detergents, and natural compounds, promote or inhibit amyloid formation. However, the underlying mechanisms of the opposing effects are unclear. We examined the effects of two polyphenols, that is, epigallocatechin gallate (EGCG) and kaempferol‐7─O─glycoside (KG), with high and low solubilities, respectively, on the amyloid formation of α‐synuclein (αSN). EGCG and KG inhibited and promoted amyloid formation of αSN, respectively, when monitored by thioflavin T (ThT) fluorescence or transmission electron microscopy (TEM). Nuclear magnetic resonance (NMR) analysis revealed that, although interactions of αSN with soluble EGCG increased the solubility of αSN, thus inhibiting amyloid formation, interactions of αSN with insoluble KG reduced the solubility of αSN, thereby promoting amyloid formation. Our study suggests that opposing effects of polyphenols on amyloid formation of proteins and peptides can be interpreted based on the solubility of polyphenols.  相似文献   
163.
Environmental monitoring programs often measure contaminant concentrations in animal tissues consumed by humans (e.g., muscle). By comparison, demonstration of the protection of biota from the potential effects of radionuclides involves a comparison of whole-body doses to radiological dose benchmarks. Consequently, methods for deriving whole-body concentration ratios based on tissue-specific data are required to make best use of the available information. This paper provides a series of look-up tables with whole-body:tissue-specific concentration ratios for non-human biota. Focus was placed on relatively broad animal categories (including molluscs, crustaceans, freshwater fishes, marine fishes, amphibians, reptiles, birds and mammals) and commonly measured tissues (specifically, bone, muscle, liver and kidney). Depending upon organism, whole-body to tissue concentration ratios were derived for between 12 and 47 elements. The whole-body to tissue concentration ratios can be used to estimate whole-body concentrations from tissue-specific measurements. However, we recommend that any given whole-body to tissue concentration ratio should not be used if the value falls between 0.75 and 1.5. Instead, a value of one should be assumed.  相似文献   
164.
A phosphatase was purified through a combination of ion‐exchange and hydrophobic chromatography followed by native PAGE from Physarum plasmodia. Recently, we demonstrated that this phosphatase isoform has a hydrolytic activity towards the PMLC (phosphorylated light chain of Physarum myosin II) at pH 7.6. The apparent molecular mass of the purified enzyme was estimated at approximately 50 kDa by means of analytical gel filtration. The enzyme was purified 340‐fold to a final phosphatase activity of 400 pkat/mg of protein. Among the phosphorylated compounds tested for hydrolytic activity at pH 7.6, the enzyme showed no activity towards nucleotides. At pH 7.6, hydrolytic activity of the enzyme against PMLC was detected; at pH 5.0, however, no hydrolytic activity towards PMLC was observed. The K m of the enzyme for PMLC was 10 μM, and the V max was 1.17 nkat/mg of protein. Ca2+ (10 μM) inhibited the activity of the enzyme, and Mg2+ (8.5 μM) activated the dephosphorylation of PMLC. Mn2+ (1.6 μM) highly stimulated the enzyme's activity. Based on these results, we concluded that the enzyme is likely to be a phosphatase with hydrolytic activity towards PMLC.  相似文献   
165.
Translation elongation factor G (EF‐G) in bacteria plays two distinct roles in different phases of the translation system. EF‐G catalyses the translocation of tRNAs on the ribosome in the elongation step, as well as the dissociation of the post‐termination state ribosome into two subunits in the recycling step. In contrast to this conventional view, it has very recently been demonstrated that the dual functions of bacterial EF‐G are distributed over two different EF‐G paralogues in human mitochondria. In the present study, we show that the same division of roles of EF‐G is also found in bacteria. Two EF‐G paralogues are found in the spirochaete Borrelia burgdorferi, EF‐G1 and EF‐G2. We demonstrate that EF‐G1 is a translocase, while EF‐G2 is an exclusive recycling factor. We further demonstrate that B. burgdorferi EF‐G2 does not require GTP hydrolysis for ribosome disassembly, provided that translation initiation factor 3 (IF‐3) is present in the reaction. These results indicate that two B. burgdorferi EF‐G paralogues are close relatives to mitochondrial EF‐G paralogues rather than the conventional bacterial EF‐G, in both their phylogenetic and biochemical features.  相似文献   
166.

Background  

Thellungiella halophila (also known as T. salsuginea) is a model halophyte with a small size, short life cycle, and small genome. Thellungiella genes exhibit a high degree of sequence identity with Arabidopsis genes (90% at the cDNA level). We previously generated a full-length enriched cDNA library of T. halophila from various tissues and from whole plants treated with salinity, chilling, freezing stress, or ABA. We determined the DNA sequences of 20 000 cDNAs at both the 5'- and 3' ends, and identified 9569 distinct genes.  相似文献   
167.
Nitric oxide (NO) is related to various physiological effects as well as to numerous diseases caused by accentuation of NO production. Measurement of NO in cells and tissues is difficult as NO readily reacts with other molecules; furthermore, its half‐life as a radical is fleeting. Currently, many NO pharmaceuticals are marketed as therapeutic agents for ischemic disease. Consequently, the identification of NO radicals and determination of generation rate from pharmaceuticals is very important when the effect of the medicinal supply is estimated. In this study, we developed a fluorometric assay for NO employing sesamol (3,4‐methylenedioxyphenol) as a fluorometric substrate. Sesamol is converted to a fluorescent derivative (ex. 365 nm, em. 447 nm), which is dimmer in the presence of NO. The detection limit of NO with this method is 400 fmol; moreover, NO generated from drugs can be measured. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
168.
SUMMARY The effects of photosynthetically active radiation (PAR) and temperature on the photosynthesis of two Vietnamese brown algae, Sargassum mcclurei and S. oligocystum (Fucales), were determined by field and laboratory measurements. Dissolved oxygen sensors and pulse‐amplitude modulated (PAM) fluorometry were used for the measurements of photosynthetic efficiency. A Diving‐PAM revealed that underwater measurements of the effective quantum yield (Φ PSII ) of both species declined with increasing incident PAR, with minimum Φ PSII occurring during noon to early afternoon. Φ PSII recovered in the evening, indicating photo‐adaptation to excessive PAR. In laboratory experiments, Φ PSII also decreased under continuous exposure to 1000 μmol photons m?2 s?1; and full recovery occurred after 12 h of dark acclimatization. The net photosynthesis – PAR experiments of S. mcclurei and S. oligocystum conducted at 28°C revealed that the net photosynthetic rate quickly increased at PAR below the saturation irradiance of 361 and 301 μmol photons m?2 s?1 and nearly saturated to maximum net photosynthetic rates of 385 and 292 μg O2 gww ? 1 min?1 without photoinhibition, respectively. Gross photosynthesis and dark respiration experiments determined over a range of temperatures (12–40°C), revealed that the maximum gross photosynthetic rates of 201 and 147 μg O2 gww ? 1 min?1 occurred at 32.9 and 30.7°C for S. mcclurei and S. oligocystum, respectively. The dark respiration rates increased exponentially over the temperature ranges examined. The estimated maximum value of the maximum quantum yield occurred at 19.3 and 20.0°C and was 0.76 and 0.74, respectively. Similar to the natural habitat of the study site, these two species tolerated the relatively high temperatures and broad range of PAR. The ability of these species to recover from exposure to high PAR is one of the mechanisms that allow them to flourish in the shallow water environment.  相似文献   
169.
The linear ubiquitin chain assembly complex (LUBAC) plays a crucial role in activating the canonical NF‐κB pathway, which is important for B‐cell development and function. Here, we describe a mouse model (B‐HOIPΔlinear) in which the linear polyubiquitination activity of LUBAC is specifically ablated in B cells. Canonical NF‐κB and ERK activation, mediated by the tumour necrosis factor (TNF) receptor superfamily receptors CD40 and TACI, was impaired in B cells from B‐HOIPΔlinear mice due to defective activation of the IKK complex; however, B‐cell receptor (BCR)‐mediated activation of the NF‐κB and ERK pathways was unaffected. B‐HOIPΔlinear mice show impaired B1‐cell development and defective antibody responses to thymus‐dependent and thymus‐independent II antigens. Taken together, these data suggest that LUBAC‐mediated linear polyubiquitination is essential for B‐cell development and activation, possibly via canonical NF‐κB and ERK activation induced by the TNF receptor superfamily, but not by the BCR.  相似文献   
170.
The platelet aggregation-inducing factor Aggrus, also known as podoplanin, is frequently upregulated in several types of tumors and enhances hematogenous metastasis by interacting with and activating the platelet receptor CLEC-2. Thus, Aggrus–CLEC-2 binding could be a therapeutic molecular mechanism for cancer therapy. We generated a new anti-human Aggrus monoclonal antibody, MS-1, that suppressed Aggrus–CLEC-2 binding, Aggrus-induced platelet aggregation, and Aggrus-mediated tumor metastasis. Interestingly, the MS-1 monoclonal antibody attenuated the growth of Aggrus-positive tumors in vivo. Moreover, the humanized chimeric MS-1 antibody, ChMS-1, also exhibited strong antitumor activity against Aggrus-positive lung squamous cell carcinoma xenografted into NOD-SCID mice compromising antibody-dependent cellular cytotoxic and complement-dependent cytotoxic activities. Because Aggrus knockdown suppressed platelet-induced proliferation in vitro and tumor growth of the lung squamous cell carcinoma in vivo, Aggrus may be involved in not only tumor metastasis but also tumor growth by promoting platelet-tumor interaction, platelet activation, and secretion of platelet-derived factors in vivo. Our results indicate that molecular target drugs inhibiting specific platelet–tumor interactions can be developed as antitumor drugs that suppress both metastasis and proliferation of tumors such as lung squamous cell carcinoma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号