首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1096篇
  免费   61篇
  国内免费   1篇
  1158篇
  2022年   8篇
  2021年   8篇
  2019年   8篇
  2018年   9篇
  2017年   9篇
  2016年   11篇
  2015年   25篇
  2014年   28篇
  2013年   95篇
  2012年   64篇
  2011年   59篇
  2010年   29篇
  2009年   19篇
  2008年   60篇
  2007年   73篇
  2006年   57篇
  2005年   54篇
  2004年   58篇
  2003年   55篇
  2002年   55篇
  2001年   28篇
  2000年   22篇
  1999年   25篇
  1998年   10篇
  1996年   12篇
  1995年   9篇
  1994年   8篇
  1993年   12篇
  1992年   16篇
  1991年   19篇
  1990年   15篇
  1989年   25篇
  1988年   21篇
  1987年   19篇
  1986年   16篇
  1985年   7篇
  1984年   10篇
  1983年   7篇
  1982年   5篇
  1981年   5篇
  1980年   4篇
  1979年   11篇
  1977年   8篇
  1976年   6篇
  1975年   4篇
  1974年   4篇
  1973年   5篇
  1972年   5篇
  1971年   8篇
  1970年   8篇
排序方式: 共有1158条查询结果,搜索用时 15 毫秒
991.
To clarify the mechanism by which the RNA portion of a DNA/RNA hybrid is specifically hydrolyzed by ribonuclease H (RNase H), the binding of a DNA/RNA hybrid, a DNA/DNA duplex, or an RNA/RNA duplex to RNase HI from Escherichia coli was investigated by 1H-15N heteronuclear NMR. Chemical shift changes of backbone amide resonances were monitored while the substrate, a hybrid 9-mer duplex, a DNA/DNA 12-mer duplex, or an RNA/RNA 12-mer duplex was titrated. The amino acid residues affected by the addition of each 12-mer duplex were almost identical to those affected by the substrate hybrid binding, and resided close to the active site of the enzyme. The results reveal that all the duplexes, hybrid-, DNA-, and RNA-duplex, bind to the enzyme. From the linewidth analysis of the resonance peaks, it was found that the exchange rates for the binding were different between the hybrid and the other duplexes. The NMR and CD data suggest that conformational changes occur in the enzyme and the hybrid duplex upon binding.  相似文献   
992.
993.
Summary The divalent metal ion binding site and binding constant of ribonuclease HI fromEscherichia coli were investigated by observing chemical shift changes using1H–15N heteronuclear NMR. Chemical shift changes were monitored during the titration of the enzyme with salts of the divalent cations. The enzyme was uniformly labeled by15N, which facilitated the monitoring of the chemical shift change of each cross peak between the backbone amide proton and the amide15N. The chemical shifts of several amide groups were affected upon the addition of a divalent metal ion: Mg2+, Ca2+, or Ba2+. These amide groups resided close to the active site, consistent with the previous X-ray crystallographic studies. From the titration analysis, a single divalent ion binding site was observed with a weak binding constant (KD=2–4 mM for the current divalent ions).  相似文献   
994.
The nucleotide and amino acid sequences for mouse angiotensin II (AII) type 1A and 1B receptors were deduced from their complementary and genomic DNAs. Evolutionary analyses based on the nucleotide sequences of the coding region of AII type 1 receptor genes indicated that the duplication event of the type 1 gene occurred 24 +/- 2 million years ago before the divergence between the rat and mouse but after the divergence between rodents and the human/artiodactyls couple. This conclusion was consistent with the results of genomic Southern blot analyses, which revealed that the mouse and rat possess 2 similar but separate genes, whereas the bovine and human have only a single class gene.  相似文献   
995.
The mRNA level of the type-1 angiotensin II receptor (AT1) was down-regulated by angiotensin II in cultured rat glomerular mesangial cells. The effect was maximum with 1 microM AII at 6 h, sensitive to cycloheximide, and specific to AT1 since this phenomenon was blocked by DuP753, an AT1 antagonist, but not by type-2 antagonist PD123319. Dibutyryl cAMP, forskolin, and cholera toxin also caused AT1 down-regulation. These effects were not altered by either the protein kinase A inhibitor H-8 or cycloheximide. Calcium ionophore A23187, pertussis toxin, protein kinase C inhibitor staurosporine, or prolonged incubation with phorbol ester were without effect. These results suggest that there are at least two pathways to down-regulate AT1 mRNA; one way is an angiotensin II-induced, protein kinase C-independent, and cycloheximide-sensitive pathway and the other is an angiotensin II-independent, cAMP-induced, and cycloheximide-insensitive pathway.  相似文献   
996.
Summary We previously reported a novel rat membrane protein that exhibits a voltage-dependent potassium channel activity on the basis of molecular cloning combined with an electrophysiological assay. This protein, termedI sK protein, is small and different from the conventional potassium channel poroteins but induces selective permeation of potassium ions on its expression inXenopus oocytes. In this investigatiion, we examined cellular localization of ratI sK protein by preparing three different types of antibody that specifically reacts with a distinct part of ratI sK protein. Immunohistochemical analysis using these antibody preparations demonstrated that ratI sK protein is confined to the apical membrane portion of epithelial cells in the proximal tubule of the kidney, the submandibular duct and the uterine endometrium. The observed tissue distribution of ratI sK protein was consistent with that of theI sK protein mRNA determined by blot hybridization analysis. In epithelial cells the sodium, potassium-ATPase pump in the basolateral membrane generats a sodium gradient acrossthe epithelial cell and allows sodium ions to entere the cell through the apical membrane. Thus, taking into account the cellular localization of theI sK protein, together with its electrophysiological properties, we discussed a possible function of theI sK protein, namely that this protein is involved in potassium permeation in the apical membrane of epithelial cells through the depolarizing effect of sodium entry.  相似文献   
997.
998.
Misfolded or improperly assembled proteins in the endoplasmic reticulum (ER) are exported into the cytosol and degraded via the ubiquitin–proteasome pathway, a process termed ER-associated degradation (ERAD). Saccharomyces cerevisiae Hrd1p/Der3p is an ER membrane-spanning ubiquitin ligase that participates in ERAD of the cystic fibrosis transmembrane conductance regulator (CFTR) when CFTR is exogenously expressed in yeast cells. Two mammalian orthologues of yeast Hrd1p/Der3p, gp78 and HRD1, have been reported. Here, we demonstrate that gp78, but not HRD1, participates in ERAD of the CFTR mutant CFTRΔF508, by specifically promoting ubiquitylation of CFTRΔF508. Domain swapping experiments and deletion analysis revealed that gp78 binds to CFTRΔF508 through its ubiquitin binding region, the so-called coupling of ubiquitin to ER degradation (CUE) domain. Gp78 polyubiquitylated in vitro an N-terminal ubiquitin-glutathione-S-transferase (GST)-fusion protein, but not GST alone. This suggests that gp78 recognizes the ubiquitin that is already conjugated to CFTRΔF508 and catalyzes further polyubiquitylation of CFTRΔF508 in a manner similar to that of a multiubiquitin chain assembly factor (E4). Furthermore, we revealed by small interfering RNA methods that the ubiquitin ligase RMA1 functioned as an E3 enzyme upstream of gp78. Our data demonstrates that gp78 cooperates with RMA1 with E4-like activity in the ERAD of CFTRΔF508.  相似文献   
999.
Fbx8 makes Arf6 refractory to function via ubiquitination   总被引:1,自引:0,他引:1  
The small GTP-binding protein Arf6 regulates membrane remodeling at cell peripheries and plays crucial roles in higher orders of cellular functions including tumor invasion. Here we show that Fbx8, an F-box protein bearing the Sec7 domain, mediates ubiquitination of Arf6. This ubiquitination did not appear to be linked to immediate proteasomal degradation of Arf6, whereas Fbx8 knockdown caused hyperactivation of Arf6. Expression of Fbx8 protein was substantially lost in several breast tumor cell lines, in which Arf6 activity is pivotal for their invasion. Forced expression of Fbx8 in these cells suppressed their Arf6 activities and invasive activities, in which the F-box and Sec7 domains of Fbx8 are required. Together with the possible mechanism as to how Fbx8-mediated ubiquitination interferes with the functions of Arf6, we propose that Fbx8 provides a novel suppressive control of Arf6 activity through noncanonical ubiquitination. Our results indicate that dysfunction of Fbx8 expression may contribute to the invasiveness of some breast cancer cells.  相似文献   
1000.
Western blotting analysis of mouse nasal tissue using a specific anti-mouse secreted carbonic anhydrase (CA VI) antibody has shown that CA VI is present in this tissue. A single immunoreactive band of 42 kD was observed, as has been found previously for salivary tissues. RT-PCR analysis has shown that nasal mucosa expressed CA VI mRNA. By immunohistochemistry (IHC), CA VI was observed in acinar cells, in duct contents of the anterior gland of the nasal septum, and in the lateral nasal gland. The Bowman's gland, the posterior gland of the nasal septum, and the maxillary sinus gland were negative. Immunoreactivity was also observed in the mucus covering the respiratory and olfactory mucosa and in the lumen of the nasolacrimal duct. In contrast, an anti-rat CA II antibody (that crossreacts with the mouse enzyme) stained only known CA II-positive cells and an occasional olfactory receptor neuron. These results indicate that CA VI is produced by the nasal gland and is secreted over the nasal mucosa. By reversible hydration of CO(2), CA VI is presumed to play a role in mucosal functions such as CO(2) sensation and acid-base balance. It may also play a role in olfactory function as a growth factor in maturation of the olfactory epithelial cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号