首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1096篇
  免费   61篇
  国内免费   1篇
  2022年   8篇
  2021年   8篇
  2019年   8篇
  2018年   9篇
  2017年   9篇
  2016年   11篇
  2015年   25篇
  2014年   28篇
  2013年   95篇
  2012年   64篇
  2011年   59篇
  2010年   29篇
  2009年   19篇
  2008年   60篇
  2007年   73篇
  2006年   57篇
  2005年   54篇
  2004年   58篇
  2003年   55篇
  2002年   55篇
  2001年   28篇
  2000年   22篇
  1999年   25篇
  1998年   10篇
  1996年   12篇
  1995年   9篇
  1994年   8篇
  1993年   12篇
  1992年   16篇
  1991年   19篇
  1990年   15篇
  1989年   25篇
  1988年   21篇
  1987年   19篇
  1986年   16篇
  1985年   7篇
  1984年   10篇
  1983年   7篇
  1982年   5篇
  1981年   5篇
  1980年   4篇
  1979年   11篇
  1977年   8篇
  1976年   6篇
  1975年   4篇
  1974年   4篇
  1973年   5篇
  1972年   5篇
  1971年   8篇
  1970年   8篇
排序方式: 共有1158条查询结果,搜索用时 15 毫秒
91.
4-Hydroxy-2-nonenal (HNE), a major lipid peroxidation-derived reactive aldehyde, is a potent inhibitor of sulfhydryl enzymes, such as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). It has been suggested that HNE exerts an inhibitory effect on the enzyme due to the modification of the cysteine residue (Cys-149) at the catalytic site generating the HNE-cysteine Michael addition-type adduct [Uchida, K., and Stadtman, E. R. (1993) J. Biol. Chem. 268, 6388-6393]. In the study presented here, to elucidate the mechanism for the inactivation of GAPDH by HNE, we attempted to identify the modification sites of the enzyme by monitoring the formation of the HNE Michael adducts by mass spectrometric methods. Incubation of GAPDH (1 mg/mL) with 1 mM HNE in 50 mM sodium phosphate buffer (pH 7.4) at 37 degrees C resulted in a time-dependent loss of enzyme activity, which was associated with the covalent binding of HNE to the enzyme. To identify the site of modification of GAPDH by HNE, both the HNE-pretreated and untreated GAPDH were digested with trypsin and V8 protease, and the resulting peptides were subjected to electrospray ionization liquid chromatography-mass spectrometry (ESI-LC-MS). This technique identified five peptides, which contained the HNE adducts at His-164, Cys-244, Cys-281, His-327, and Lys-331 and revealed that both His-164 and Cys-281 were very rapidly modified at 5 min, followed by Cys-244 at 15 min and His-327 and Lys-331 at 30 min. These observations and the observation that the HNE modification of the catalytic center, Cys-149, was not observed suggest that the HNE inactivation of GAPDH is not due to the modification of the catalytic center but to the selective modification of amino acids primarily located in the surface of the GAPDH molecule.  相似文献   
92.
The fetal mouse liver tissues in our organotypic slice culture were spread and flattened for at least 3 weeks; small, round cells were distributed in the center and polygonal cells were seen in the periphery. Ultrastructurally, polygonal cells showed abundant rough endoplasmic reticulum and mitochondria. They expressed albumin (ALB) and α-fetoprotein (AFP) for at least 3 weeks, and Cx32-immunoreactivity was also seen in a plaque on the cells. Many proliferating cell nuclear antigen (PCNA)-positive cells were observed at the periphery, and there were scattered CK-19-positive cells. The spreading of the fetal liver tissue in organotypic slice culture was reduced in medium containing sodium butyrate (SB). The expression of ALB was well maintained in polyglonal cells of the SB(+) group 3 weeks after culture and AFP-immunoreactivity was decreased in the SB(+) group. The concentration of ALB in the medium was significantly higher in the SB(+) than in the SB(-) group. CK-19-positive cells in the SB(+) group were increased in number more than those in the SB(-) group. PCNA-positive cells were less numerous in the SB(+) group, and Cx32-positive plaques were increased. SB can help immature hepatocytes to differentiate into the mature type and the cholangiocytic lineage, reducing their proliferation. These findings suggest that parenchymal cells in our organotypic slice culture of the fetal mouse liver can maintain structure and function as in vivo for the long term, and SB is shown to be a differentiation inducer of parenchymal cells in the slice culture. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
93.
The human MTH1 antimutator protein hydrolyzes mutagenic oxidized nucleotides, and thus prevents their incorporation into DNA and any subsequent mutation. We have examined its great selectivity for oxidized nucleotides by analyzing the structure of the protein and its interaction with nucleotides, as reflected in the fluorescence of its tryptophan residues. The binding of nucleotides decreased the intensity of MTH1 protein fluorescence and red-shifted the emission peak, indicating that at least one tryptophan residue is close to the binding site. Oxidized nucleotides (2-OH-dATP and 8-oxo-dGTP) produced a larger decrease in fluorescence intensity than did unoxidized nucleotides, and MTH1 protein had a much higher binding affinity for oxidized nucleotides. Deconvolution of protein fluorescence by comparison of its quenching by positively (Cs(+)) and negatively (I(-)) charged ions indicated that the MTH1 tryptophan residues are in two different environments. One class of tryptophan residues is exposed to solvent but in a negatively charged environment; the other class is partially buried. While the binding of unoxidized nucleotides quenches the fluorescence of only class 1 tryptophan residue(s), the binding of oxidized nucleotides quenched that of class 2 tryptophan residue(s) as well. This suggests that selectivity is due to additional contact between the protein and the oxidized nucleotide. Mutation analysis indicated that the tryptophan residue at position 117, which is in a negative environment, is in contact with nucleotides. The negatively charged residues in the binding site probably correlate with the finding that nucleotide binding requires metal ions and depends upon their nature. Positively charged metal ions probably act by neutralizing the negatively charged nucleotide phosphate groups. (c) 2002 Elsevier Science Ltd.  相似文献   
94.
Proteases involved in long-term potentiation   总被引:6,自引:0,他引:6  
Much attention has been paid to proteases involved in long-term potentiation (LTP). Calpains, Ca-dependent cysteine proteases, have first been demonstrated to be the mediator of LTP by the proteolytic cleavage of fodrin, which allows glutamate receptors located deep in the postsynaptic membrane to move to the surface. It is now generally considered that calpain activation is necessary for LTP formation in the cleavage of substrates such as protein kinase Czeta, NMDA receptors, and the glutamate receptor-interacting protein. Recent studies have shown that serine proteases such as tissue-type plasminogen activator (tPA), thrombin, and neuropsin are involved in LTP. tPA contributes to LTP by both receptor-mediated activation of cAMP-dependent protein kinase and the cleavage of NMDA receptors. Thrombin induces a proteolytic activation of PAR-1, resulting in activation of protein kinase C, which reduces the voltage-dependent Mg2+ blockade of NMDA receptor-channels. On the other hand, neuropsin may act as a regulatory molecule in LTP via its proteolytic degradation of extracellular matrix protein such as fibronectin. In addition to such neuronal proteases, proteases secreted from microglia such as tPA may also contribute to LTP. The enzymatic activity of each protease is strictly regulated by endogenous inhibitors and other factors in the brain. Once activated, proteases can irreversibly cleave peptide bonds. After cleavage, some substrates are inactivated and others are activated to gain new functions. Therefore, the issue to identify substrates for each protease is very important to understand the molecular basis of LTP.  相似文献   
95.
We have analyzed the cleavage specificities of various prokaryotic Type 2 ribonucleases H (RNases H) on chimeric DNA-RNA-DNA/DNA substrates containing one to four ribonucleotides. RNases HII from Bacillus subtilis and Thermococcus kodakaraensis cleaved all of these substrates to produce a DNA segment with a 5'-monoribonucleotide. Consequently, these enzymes cleaved even the chimeric substrate containing a single ribonucleotide at the DNA-RNA junction (5'-side of the single ribonucleotide). In contrast, Escherichia coli RNase HI and B. subtilis RNase HIII did not cleave the chimeric substrate containing a single ribonucleotide. These results suggest that bacterial and archaeal RNases HII are involved in excision of a single ribonucleotide misincorporated into DNA.  相似文献   
96.
97.
Expression of programmed death 1 ligands by murine T cells and APC   总被引:31,自引:0,他引:31  
Programmed death 1 (PD-1) is a new member of the CD28/CTLA-4 family, which has been implicated in the maintenance of peripheral tolerance. Two ligands for PD-1, namely, B7-H1 (PD-L1) and B7-DC (PD-L2), have recently been identified as new members of the B7 family but their expression at the protein level remains largely unknown. To characterize the expression of B7-H1 and B7-DC, we newly generated an anti-mouse B7-H1 mAb (MIH6) and an anti-mouse B7-DC mAb (TY25). MIH6 and TY25 immunoprecipitated a single molecule of 43 and 42 kDa from the lysate of B7-H1 and B7-DC transfectants, respectively. Flow cytometric analysis revealed that B7-H1 was broadly expressed on the surface of mouse tumor cell lines while the expression of B7-DC was rather restricted. PD-1 was expressed on anti-CD3-stimulated T cells and anti-IgM plus anti-CD40-stimulated B cells at high levels but was undetectable on activated macrophages or DCs. B7-H1 was constitutively expressed on freshly isolated splenic T cells, B cells, macrophages, and dendritic cells (DCs), and up-regulated on T cells by anti-CD3 stimulation on macrophages by LPS, IFN-gamma, GM-CSF, or IL-4, and on DCs by IFN-gamma, GM-CSF, or IL-4. In contrast, B7-DC expression was only inducible on macrophages and DCs upon stimulation with IFN-gamma, GM-CSF, or IL-4. The inducible expression of PD-1 ligands on both T cells and APCs may suggest new paradigms of PD-1-mediated immune regulation.  相似文献   
98.
99.
Thermally induced transition between anhydrous and hydrated forms of highly crystalline beta-chitin was studied by differential thermal calorimetry (DSC) and X-ray diffraction. DSC of wet beta-chitin in a sealed pan gave two well-defined endothermic peaks at 85.2 and 104.7 degrees C on heating and one broad exothermic peak at between 60 and 0 degrees C on cooling. These peaks were highly reproducible and became more distinct after repeated heating-cooling cycles. The X-ray diffraction pattern of wet beta-chitin at elevated temperature showed corresponding changes in d-spacing between the sheets formed by stacking of chitin molecules. These phenomena clearly show that water is reversibly incorporated into the beta-chitin crystal and that the temperature change induces transitions between anhydrous, monohydrate, and dihydrate forms. The DSC behavior in heating-cooling cycles, including reversion between the two endothermic peaks, indicated that the transition between monohydrate and dihydrate was a fast and narrow-temperature process, whereas the one between the anhydrous and the monohydrate form was a slow and wide-temperature process.  相似文献   
100.
Haloperidol and its two metabolites, reduced haloperidol and 4-(4-chlorophenyl)-4-hydroxypiperidine (CPHP) in human plasma and urine were analyzed by HPLC-MS using a new polymer column (MSpak GF-310), which enabled direct injection of crude biological samples without pretreatment. Recoveries of haloperidol and reduced haloperidol spiked into plasma were 64.4-76.1% and 46.8-50.2%, respectively; those for urine were 87.3-99.4% and 94.2-98.5%, respectively; those of CPHP for both samples were not less than 92.7%. The regression equations for haloperidol, reduced haloperidol and CPHP showed good linearity in the ranges of 10-800, 15-800 and 400-800 ng/ml, respectively, for both plasma and urine. Their detection limits were 5, 10 and 300 ng/ml, respectively, for both samples. Thus, the present method was sensitive enough for detection and determination of high therapeutic and toxic levels for haloperidol and its metabolites present in biological samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号