首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1801篇
  免费   136篇
  国内免费   1篇
  1938篇
  2022年   6篇
  2021年   15篇
  2020年   8篇
  2019年   14篇
  2018年   16篇
  2017年   16篇
  2016年   28篇
  2015年   45篇
  2014年   38篇
  2013年   92篇
  2012年   118篇
  2011年   108篇
  2010年   53篇
  2009年   54篇
  2008年   106篇
  2007年   102篇
  2006年   101篇
  2005年   87篇
  2004年   93篇
  2003年   98篇
  2002年   102篇
  2001年   65篇
  2000年   48篇
  1999年   57篇
  1998年   21篇
  1997年   19篇
  1996年   18篇
  1995年   26篇
  1994年   18篇
  1993年   18篇
  1992年   35篇
  1991年   28篇
  1990年   41篇
  1989年   27篇
  1988年   38篇
  1987年   26篇
  1986年   19篇
  1985年   26篇
  1984年   17篇
  1983年   11篇
  1982年   10篇
  1981年   5篇
  1980年   8篇
  1979年   13篇
  1978年   6篇
  1977年   5篇
  1973年   8篇
  1972年   7篇
  1971年   3篇
  1969年   3篇
排序方式: 共有1938条查询结果,搜索用时 0 毫秒
131.
Proteases involved in long-term potentiation   总被引:6,自引:0,他引:6  
Much attention has been paid to proteases involved in long-term potentiation (LTP). Calpains, Ca-dependent cysteine proteases, have first been demonstrated to be the mediator of LTP by the proteolytic cleavage of fodrin, which allows glutamate receptors located deep in the postsynaptic membrane to move to the surface. It is now generally considered that calpain activation is necessary for LTP formation in the cleavage of substrates such as protein kinase Czeta, NMDA receptors, and the glutamate receptor-interacting protein. Recent studies have shown that serine proteases such as tissue-type plasminogen activator (tPA), thrombin, and neuropsin are involved in LTP. tPA contributes to LTP by both receptor-mediated activation of cAMP-dependent protein kinase and the cleavage of NMDA receptors. Thrombin induces a proteolytic activation of PAR-1, resulting in activation of protein kinase C, which reduces the voltage-dependent Mg2+ blockade of NMDA receptor-channels. On the other hand, neuropsin may act as a regulatory molecule in LTP via its proteolytic degradation of extracellular matrix protein such as fibronectin. In addition to such neuronal proteases, proteases secreted from microglia such as tPA may also contribute to LTP. The enzymatic activity of each protease is strictly regulated by endogenous inhibitors and other factors in the brain. Once activated, proteases can irreversibly cleave peptide bonds. After cleavage, some substrates are inactivated and others are activated to gain new functions. Therefore, the issue to identify substrates for each protease is very important to understand the molecular basis of LTP.  相似文献   
132.
We have analyzed the cleavage specificities of various prokaryotic Type 2 ribonucleases H (RNases H) on chimeric DNA-RNA-DNA/DNA substrates containing one to four ribonucleotides. RNases HII from Bacillus subtilis and Thermococcus kodakaraensis cleaved all of these substrates to produce a DNA segment with a 5'-monoribonucleotide. Consequently, these enzymes cleaved even the chimeric substrate containing a single ribonucleotide at the DNA-RNA junction (5'-side of the single ribonucleotide). In contrast, Escherichia coli RNase HI and B. subtilis RNase HIII did not cleave the chimeric substrate containing a single ribonucleotide. These results suggest that bacterial and archaeal RNases HII are involved in excision of a single ribonucleotide misincorporated into DNA.  相似文献   
133.
Thermally induced transition between anhydrous and hydrated forms of highly crystalline beta-chitin was studied by differential thermal calorimetry (DSC) and X-ray diffraction. DSC of wet beta-chitin in a sealed pan gave two well-defined endothermic peaks at 85.2 and 104.7 degrees C on heating and one broad exothermic peak at between 60 and 0 degrees C on cooling. These peaks were highly reproducible and became more distinct after repeated heating-cooling cycles. The X-ray diffraction pattern of wet beta-chitin at elevated temperature showed corresponding changes in d-spacing between the sheets formed by stacking of chitin molecules. These phenomena clearly show that water is reversibly incorporated into the beta-chitin crystal and that the temperature change induces transitions between anhydrous, monohydrate, and dihydrate forms. The DSC behavior in heating-cooling cycles, including reversion between the two endothermic peaks, indicated that the transition between monohydrate and dihydrate was a fast and narrow-temperature process, whereas the one between the anhydrous and the monohydrate form was a slow and wide-temperature process.  相似文献   
134.
Leukocyte common antigen-related molecule (LAR) is a receptor-like protein tyrosine phosphatase (PTPase) with two PTPase domains. In the present study, we detected the expression of LAR in the brain, kidney, and thymus of mice using anti-LAR PTPase domain subunit monoclonal antibody (mAb) YU1. In the thymus, LAR was expressed on CD4(-)CD8(-) and CD4(-)CD8(low) thymocytes. The development of thymocytes in CD45 knockout mice is blocked partially in the maturation of CD4(-)CD8(-) to CD4(+)CD8(+). We postulated that LAR regulates Lck and Fyn in the immature thymocytes. Transfection of wild-type LAR activated extracellular signal-regulated kinase signal transduction pathway in CD45-deficient Jurkat cells stimulated with anti-CD3 mAb. LAR mutants, with Cys to Ser mutation in the catalytic center of PTPase D1, bound to tyrosine-phosphorylated Lck and Fyn, and LAR PTPase domain 2 was tyrosine phosphorylated by Fyn tyrosine kinase. The phosphorylated LAR was associated with Fyn Src homology 2 domain. Moreover, LAR dephosphorylated phosphorylated tyrosine residues in both the COOH terminus and kinase domain of Fyn in vitro. Our results indicate that Lck and Fyn would be substrates of LAR in immature thymocytes and that each LAR PTPase domain plays distinct functional roles in phosphorylation and dephosphorylation.  相似文献   
135.
Twenty-three halotolerant and biosurfactant producing strains were collected from salty conditions in central Thailand. One of the strains designated BBK-1 produced the biosurfactants with the highest activity. BBK-1 was isolated from fermented foods and was identified as B. subtilis based on its physiological characteristics and 16S rRNA gene sequence. We show that the strain grows in media containing NaCl up to 16% (w/v) and produces biosurfactants in NaCl up to 8%. We found that B. subtilis BBK-1 produces three kinds of surface-active lipopeptides simultaneously. By their respective molecular weights and amino acid compositions, it is indicated that these lipopeptides are bacillomycin L, plipastatin, and surfactin. In order to analyze the production mechanism of lipopeptides further in the strain, a generally important biosynthetic gene encoding 4'-phosphopantetheinyl transferase was cloned and sequenced. The gene existed in a single copy in the genome and the deduced amino acid sequence was almost identical to that of Lpa-14 from B. subtilis strain RB14, which co-produces iturin A and surfactin.  相似文献   
136.
To investigate the importance of tyrosine recognition by the AP-1B clathrin adaptor subunit mu1B for basolateral sorting of integral membrane proteins in polarized epithelial cells, we have produced and characterized a mutant form of mu1B. The mutant (M-mu1B) contains alanine substitutions of each of the four conserved residues, which in the AP-2 adaptor subunit micro2 are critical for interacting with tyrosine-based endocytosis signals. We show M-mu1B is defective for tyrosine binding in vitro, but is nevertheless incorporated into AP-1 complexes in transfected cells. Using LLC-PK1 cells expressing either wild type or M-mu1B, we find that there is inefficient basolateral expression of membrane proteins whose basolateral targeting signals share critical tyrosines with signals for endocytosis. In contrast, membrane proteins whose basolateral targeting signals are distinct from their endocytosis signals (transferrin and low-density lipoprotein receptors) accumulate at the basolateral domain normally, although in a manner that is strictly dependent on mu1B or M-mu1B expression. Our results suggest that mu1B interacts with different classes of basolateral targeting signals in distinct ways.  相似文献   
137.
Correlation between the level of reactive oxygen species (ROS) generated by airway inflammatory cells and superoxide dismutase (SOD) activity of pulmonary tissue during an asthma attach was investigated in a guinea pig model of allergic asthma. In addition, the influence of SOD inhibition by diethyldithiocarbamate (DDC, Cu-chelating agent) on the airway was investigated in terms of pulmonary function during an asthma attach. Relative to controls, the capacity of bronchoalveolar lavage fluid (BAL) cells to release ROS was significantly increased in guinea pigs sensitized with ovalbumin (OA) as the antigen, and significantly increased in guinea pigs with an asthma attack provoked by the inhalation of OA. SOD activity was increased significantly in the antigen-sensitized group. The asthma provocation group showed a tendency for increase in total SOD activity, compared with the sensitization group, whose increase was dependent on the increase in copper, zinc-SOD (Cu, Zn-SOD) activity. Pretreatment with DDC increased the severity and duration of the asthma attack. These results were indicated that Cu, Zn-SOD was closely involved in the asthma process, particularly in the scavenging of oxygen radicals secreted from BAL cells.  相似文献   
138.
Hey T  Lipps G  Sugasawa K  Iwai S  Hanaoka F  Krauss G 《Biochemistry》2002,41(21):6583-6587
The XPC-HR23B complex is a prime candidate for the initial damage recognition step during global genome nucleotide excision repair. A specific interaction between the XPC-HR23B complex and various types of damaged DNA substrates has been demonstrated in recent work by electrophoretic mobility shift assays or immunoprecipitation. Although these studies allowed the estimation of relative binding affinities for the different types of lesions, the presence of large amounts of competitor DNA or the need for glutaraldehyde fixation prevented the quantification of equilibrium constants. We have performed a quantitative study on the binding of XPC to damaged DNA using fluorescence anisotropy measurements. The XPC-HR23B complex binds with high affinity (K(D) approximately 1-3 nM) to fluorescent 36 bp DNA fragments containing a single cisplatin 1,3-intrastrand adduct or a six-nucleotide mispaired region. From stoichiometric titration experiments, it is concluded that approximately 70% of the XPC-HR23B preparation is active in DNA binding. Binding experiments employing fluorescent probes with a single defined photoproduct reveal a 30-fold preference of XPC for 6,4-photoproducts as compared to a cyclobutane dimer. Competition experiments with undamaged and damaged plasmid DNA indicate that the XPC-HR23B complex discriminates between damaged and undamaged sites with high specificity. The specificity factor is between 100 and 3000, depending on the number of nonspecific sites considered in the calculations. Upon addition of XPA to the XPC binding reaction mixtures, it was not possible to detect cooperative ternary complex formation on the platinated 36 bp probe.  相似文献   
139.
Phosphorylation of the Fanconi anemia complementation group A (FANCA) protein is thought to be important for the function of the FA pathway. However, the kinase for FANCA (so-called FANCA-PK) remains to be identified. FANCA has a consensus sequence for Akt kinase near serine 1149 (Ser1149), suggesting that Akt can phosphorylate FANCA. We performed in vitro kinase assays using as substrate either a GST-fusion wild-type (WT) FANCA fragment or a GST-fusion FANCA fragment containing a mutation from serine to alanine at 1149 (FANCA-S1149A). These experiments confirmed that FANCA is phosphorylated at Ser 1149, in vitro. However, (32)P-orthophosphate labeling experiments revealed that FANCA-S1149A was more efficiently phosphorylated than WT-FANCA. Furthermore, phosphorylation of wild-type FANCA was blocked by coexpression of a constitutively active (CA)-Akt and enhanced by a dominant-negative (DN) Akt. Our results suggest that Akt is a negative regulator of FANCA phosphorylation.  相似文献   
140.
We report here that DNA polymerase beta (pol beta), the base excision repair polymerase, is highly expressed in human melanoma tissues, known to be associated with UV radiation exposure. To investigate the potential role of pol beta in UV-induced genetic instability, we analyzed the cellular and molecular effects of excess pol beta. We firstly demonstrated that mammalian cells overexpressing pol beta are resistant and hypermutagenic after UV irradiation and that replicative extracts from these cells are able to catalyze complete translesion replication of a thymine-thymine cyclobutane pyrimidine dimer (CPD). By using in vitro primer extension reactions with purified pol beta, we showed that CPD as well as, to a lesser extent, the thymine-thymine pyrimidine-pyrimidone (6-4) photoproduct, were bypassed. pol beta mostly incorporates the correct dATP opposite the 3'-terminus of both CPD and the (6-4) photoproduct but can also misinsert dCTP at a frequency of 32 and 26%, respectively. In the case of CPD, efficient and error-prone extension of the correct dATP was found. These data support a biological role of pol beta in UV lesion bypass and suggest that deregulated pol beta may enhance UV-induced genetic instability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号