首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   6篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2015年   8篇
  2014年   5篇
  2013年   5篇
  2012年   8篇
  2011年   9篇
  2010年   2篇
  2009年   6篇
  2008年   5篇
  2007年   4篇
  2006年   7篇
  2005年   6篇
  2004年   12篇
  2003年   6篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   4篇
  1986年   5篇
  1985年   4篇
  1984年   5篇
  1983年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   3篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
91.
Selection-based recombineering is a flexible and proven technology to precisely modify bacterial genomes at single base resolution. It consists of two steps of homologous recombination followed by selection/counter-selection. However, the shortage of efficient counter-selectable markers limits the throughput of this method. Additionally, the emergence of ‘selection escapees’ can affect recombinant pools generated through this method, and they must be manually removed at each step of selection-based recombineering. Here, we report a series of efforts to improve the throughput and robustness of selection-based recombineering and to achieve seamless and automatable genome engineering. Using the nucleoside kinase activity of herpes simplex virus thymidine kinase (hsvTK) on the non-natural nucleoside dP, a highly efficient, rapid, and liquid-based counter-selection system was established. By duplicating hsvtk gene, combined with careful control of the population size for the subsequent round, we effectively eliminated selection escapes, enabling seamless and multiple insertions/replacement of gene-size fragments in the chromosome. Four rounds of recombineering could thus be completed in 10 days, requiring only liquid handling and without any need for colony isolation or genotype confirmation. The simplicity and robustness of our method make it broadly accessible for multi-locus chromosomal modifications.  相似文献   
92.
93.
We establish a novel method for the induction and collection of mesenchymal stem cells using a typical cell surface marker, CD105, through adipogenesis from mouse ES cells. ES cells were cultured in a medium for adipogenesis. Mesenchymal stem cells from mouse ES cells were easily identified by the expression of CD105, and were isolated and differentiated into multiple mesenchymal cell types. Mesenchymal stem cells showed remarkable telomerase activity and sustained their growth for a long time with a high potential for differentiation involving skeletal myogenesis in vitro. When mesenchymal stem cells were transplanted into the injured tibialis anterior muscles, they differentiated into skeletal muscle cells in vivo. In addition, they improved the vascular formation, but never formed teratoma for longer than 6 months. Gene expression profiles revealed that mesenchymal stem cells lost pluripotency, while they acquired high potential to differentiate into mesenchymal cell lines. They thus indicate a promising new source of cell-based therapy without teratoma formation.  相似文献   
94.
It is known that obese adipose tissues are hypoxic and express hypoxia-inducible factor (HIF)-1α. Although some studies have shown that the expression of HIF-1α in adipocytes induces glucose intolerance, the mechanisms are still not clear. In this study, we examined its effects on the development of type 2 diabetes by using adipocyte-specific HIF-1α knockout (ahKO) mice. ahKO mice showed improved glucose tolerance compared with wild type (WT) mice. Macrophage infiltration and mRNA levels of monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor α (TNFα) were decreased in the epididymal adipose tissues of high fat diet induced obese ahKO mice. The results indicated that the obesity-induced adipose tissue inflammation was suppressed in ahKO mice. In addition, in the ahKO mice, serum insulin levels were increased under the free-feeding but not the fasting condition, indicating that postprandial insulin secretion was enhanced. Serum glucagon-like peptide-1 (GLP-1) levels were also increased in the ahKO mice. Interestingly, adiponectin, whose serum levels were increased in the obese ahKO mice compared with the obese WT mice, stimulated GLP-1 secretion from cultured intestinal L cells. Therefore, insulin secretion may have been enhanced through the adiponectin-GLP-1 pathway in the ahKO mice. Our results suggest that the deletion of HIF-1α in adipocytes improves glucose tolerance by enhancing insulin secretion through the GLP-1 pathway and by reducing macrophage infiltration and inflammation in adipose tissue.  相似文献   
95.
Compared to other organs, the mouse thymus exhibits a high level of sialidase activity in both the soluble and crude membrane fractions, as measured at neutral pH using 4MU‐Neu5Ac as a substrate. The main purpose of the present study was to identify the sialidase with a high level of the activity at neutral pH in the crude membrane. Several parameters were analyzed using the soluble (S) fraction, N and D fractions that were obtained by NP‐40 or DOC/NP‐40 solubilization from the thymus crude membrane. The main sialidase activity in the N fraction exhibited almost the same pI as that of soluble Neu2 and 60% of the activity was removed from the membrane by three washes with 10 mM Tris‐buffer, at pH 7.0. The N fraction preferentially hydrolyzed the sialic acid bond of glycoprotein and exhibited sialidase activity with fetuin at pH 7.0 but not at pH 4.5. The same activity was observed in a plasma membrane‐rich fraction. To date, the removal of sialic acid from fetuin at pH 7.0 was reported only with soluble Neu2 and the membrane fraction from Neu2‐transfected COS cells. We analyzed the gene that controls the sialidase activity in the crude membrane fraction at pH 7.0 using SMXA recombinant mice and found that compared with other three genes, Neu2 presented the best correlation with the activity level. We suggest that Neu2 is most likely responsible for the main activity in the N fraction, due to its association with the membrane by an unknown mechanism.  相似文献   
96.
The mitochondrial ADP/ATP carrier (AAC) transports substrate by interconversion of its conformation between m- and c-states. The 1st loop facing the matrix (LM1) is extruded into the matrix in the m-state and is suggested to intrude into the mitochondrial membrane on conversion to the c-state conformation [Hashimoto, M., Majima, E., Goto, S., Shinohara, Y., and Terada, H. (1999) Biochemistry 38, 1050-1056]. To elucidate the mechanism of the translocation of LM1, we examined the effects of site-directed mutagenesis of two adjoining residues, Cys56 and Asp55 in the bovine type 1 AAC and Cys73 and Asp72 in the yeast type 2 AAC, on the substrate transport activity. We found that (i) replacement of the Cys by bulky and hydrophilic residues was unfavorable for efficient transport activity, (ii) the carboxyl groups of the Asp residues of the bovine and yeast AACs were essential and strictly position-specific, and (iii) hence, the mutation to Glu showed transport activity comparable to that of the native AACs. Based on these results, we discussed the functional role of LM1 in the transport activity of AAC.  相似文献   
97.
We previously clarified that heparin cofactor II (HCII), a serine proteinase inhibitor, exerts various protective actions on cardiovascular diseases in both experimental and clinical studies. In the present study, we aimed to clarify whether HCII participates in the regulation of angiogenesis. Male heterozygous HCII-deficient (HCII+/−) mice and male littermate wild-type (HCII+/+) mice at the age of 12–16 weeks were subjected to unilateral hindlimb ligation surgery. Laser speckle blood flow analysis showed that blood flow recovery in response to hindlimb ischemia was delayed in HCII+/− mice compared with that in HCII+/+ mice. Capillary number, arteriole number, and endothelial nitric-oxide synthase (eNOS), AMP-activated protein kinase (AMPK), and liver kinase B1 (LKB1) phosphorylation in ischemic muscles were decreased in HCII+/− mice. Human purified HCII (h-HCII) administration almost restored blood flow recovery, capillary density, and arteriole number as well as phosphorylation levels of eNOS, AMPK, and LKB1 in ischemic muscles of HCII+/− mice. Although treatment with h-HCII increased phosphorylation levels of eNOS, AMPK, and LKB1 in human aortic endothelial cells (HAECs), the h-HCII-induced eNOS phosphorylation was abolished by compound C, an AMPK inhibitor, and by AMPK siRNA. In a similar fashion, tube formation, proliferation, and migration of HAECs were also promoted by h-HCII treatment and were abrogated by pretreatment with compound C. HCII potentiates the activation of vascular endothelial cells and the promotion of angiogenesis in response to hindlimb ischemia via an AMPK-eNOS signaling pathway. These findings suggest that HCII is a novel therapeutic target for treatment of patients with peripheral circulation insufficiency.  相似文献   
98.
Li  Yufeng  Qi  Lei  Iwao  Atsushi  Kihira  Kentaro  Dida  Francis  Song  Zhenhu  Azuma  Eiichi  Komada  Yoshihiro 《Molecular and cellular biochemistry》2009,331(1-2):231-238
Molecular and Cellular Biochemistry - It has been reported that mitochondria-independent or mitochondria-dependent (type I/II) Fas signaling pathways in leukemia cells depend on the amount of...  相似文献   
99.
Loss of heterozygosity (LOH) is the predominant mechanism of spontaneous mutagenesis at the heterozygous thymindine kinase locus (tk) in TK6 cells. LOH events detected in spontaneous TK mutants (110 clones from p53 wild-type cells TK6-20C and 117 clones from p53-abrogated cells TK6-E6) were analyzed using 13 microsatellite markers spanning the whole of chromosome 17. Our analysis indicated an approximately 60-fold higher frequency of terminal deletions in p53-abrogated cells TK6-E6 compared to p53 wild-type cells TK6-20C whereas frequencies of point mutations (non-LOH events), interstitial deletions, and crossing over events were found to increase only less than twofold by such p53 abrogation. We then made use of an additional 17 microsatellite markers which provided an average map-interval of 1.6 Mb to map various LOH endpoints on the 45 Mb portion of chromosome 17q corresponding to the maximum length of LOH tracts (i.e. from the distal marker D17S932 to the terminal end). There appeared to be four prominent peaks (I–IV) in the distribution of LOH endpoints/Mb of Tk6-20C cells that were not evident in p53-abrogated cells TK6-E6, where they appeared to be rather broadly distributed along the 15–20 Mb length (D17S1807 to D17S1607) surrounding two of the peaks that we detected in TK6-20C cells (peaks II and III). We suggest that the chromosomal instability that is so evident in TK6-E6 cells may be due to DNA double-strand break repair occurring through non homologous end-joining rather than allelic recombination.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号