首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2016篇
  免费   123篇
  2022年   15篇
  2021年   20篇
  2020年   12篇
  2019年   19篇
  2018年   25篇
  2017年   19篇
  2016年   32篇
  2015年   68篇
  2014年   69篇
  2013年   144篇
  2012年   128篇
  2011年   121篇
  2010年   81篇
  2009年   80篇
  2008年   119篇
  2007年   117篇
  2006年   103篇
  2005年   124篇
  2004年   109篇
  2003年   116篇
  2002年   107篇
  2001年   20篇
  2000年   39篇
  1999年   35篇
  1998年   28篇
  1997年   22篇
  1996年   14篇
  1995年   29篇
  1994年   14篇
  1993年   18篇
  1992年   24篇
  1991年   20篇
  1990年   20篇
  1989年   16篇
  1988年   10篇
  1987年   10篇
  1986年   19篇
  1985年   16篇
  1984年   25篇
  1983年   13篇
  1982年   12篇
  1981年   13篇
  1980年   11篇
  1979年   15篇
  1978年   6篇
  1976年   7篇
  1974年   10篇
  1973年   9篇
  1972年   6篇
  1967年   5篇
排序方式: 共有2139条查询结果,搜索用时 31 毫秒
131.
Adrenomedullin in the eye   总被引:2,自引:0,他引:2  
Adrenomedullin (AM) is a multifunctional regulatory peptide that is produced and secreted by various types of cells. We showed the presence of high concentrations of adrenomedullin-immunoreactivity in the vitreous fluid, and the levels were elevated in patients with proliferative vitreoretinopathy. Furthermore, adrenomedullin mRNA expression levels were elevated in the tissues of intraocular tumors and orbital tumors. Adrenomedullin is produced and secreted by cultured human retinal pigment epithelial (RPE) cells. Inflammatory cytokines and hypoxia are strong stimulators for the adrenomedullin expression in retinal pigment epithelial cells. Adrenomedullin stimulated the proliferation of retinal pigment epithelial cells both under normoxia and hypoxia. Dexamethasone (DEX) increased the adrenomedullin expression in two cultured cell lines of human retinal pigment epithelial cells; ARPE-19 cells and D407 cells, while it had no noticeable effects on the cytokine-induced adrenomedullin expression. These findings suggest that adrenomedullin is involved in the pathophysiology of inflammatory and neoplastic eye diseases as an autocrine or paracrine growth stimulator. The findings on glucocorticoid-induced AM expression raise the possibility that it may be related to the pathogenesis of some eye diseases, such as central serous chorioretinopathy and multifocal posterior pigment epitheliopathy, which are frequently seen in patients treated with high doses of glucocorticoids.  相似文献   
132.
Kinesin is an ATP-driven molecular motor that moves processively along a microtubule. Processivity has been explained as a mechanism that involves alternating single- and double-headed binding of kinesin to microtubules coupled to the ATPase cycle of the motor. The internal load imposed between the two bound heads has been proposed to be a key factor regulating the ATPase cycle in each head. Here we show that external load imposed along the direction of motility on a single kinesin molecule enhances the binding affinity of ADP for kinesin, whereas an external load imposed against the direction of motility decreases it. This coupling between loading direction and enzymatic activity is in accord with the idea that the internal load plays a key role in the unidirectional and cooperative movement of processive motors.  相似文献   
133.
IL-11 inhibits the activation of NF-kappaB and induces the Th2 polarization of CD4+ T cells. The clinical utility of IL-11 is being investigated in Crohn's disease. However, physiological secretion of IL-11 in the intestine remains unclear. In this study, we investigated IL-11 secretion in human intestinal subepithelial myofibroblasts (SEMFs). Intestinal SEMFs were isolated from the human colonic mucosa. IL-11 secretion and mRNA expression were determined by ELISA and Northern blot analysis. The activating protein (AP)-1-DNA binding activity was evaluated by EMSA. IL-11 secretion was induced by IL-1beta and transforming growth factor (TGF)-beta1. These were also observed at the mRNA level. The EMSAs demonstrated that both IL-1beta and TGF-beta1 induced AP-1 activation within 2 h after stimulation, and a blockade of AP-1 activation by the recombinant adenovirus containing a dominant negative c-Jun markedly reduced the IL-1beta- and TGF-beta1-induced IL-11 mRNA expression. IL-1beta and TGF-beta1 induced an activation of ERK p42/44 and p38 MAP kinases, and the MAP kinase inhibitors (SB-202190, PD-98059, and U-0216) significantly reduced the IL-1beta- and TGF-beta1-induced IL-11 secretion. The upregulation of IL-11 mRNA by IL-1beta- and TGF-beta1 was also mediated by a p38 MAP kinase-mediated mRNA stabilization. The combination of IL-1beta and TGF-beta1 additively enhanced IL-11 secretion. Intestinal SEMFs secreted IL-11 in response to IL-1beta- and TGF-beta1. Mucosal IL-11 secretion might be important as an anti-inflammatory response in the pathogenesis of intestinal inflammation.  相似文献   
134.
Reactive oxygen species (ROS) are implicated in cardiovascular diseases. ROS, such as H2O2, act as second messengers to activate diverse signaling pathways. Although H2O2 activates several tyrosine kinases, including the epidermal growth factor (EGF) receptor, JAK2, and PYK2, in vascular smooth muscle cells (VSMCs), the intracellular mechanism by which ROS activate these tyrosine kinases remains unclear. Here, we identified two distinct signaling pathways required for receptor and nonreceptor tyrosine kinase activation by H2O2 involving a metalloprotease-dependent generation of heparin-binding EGF-like growth factor (HB-EGF) and protein kinase C (PKC)-delta activation, respectively. H2O2-induced EGF receptor tyrosine phosphorylation was inhibited by a metalloprotease inhibitor, whereas the inhibitor had no effect on H2O2-induced JAK2 tyrosine phosphorylation. HB-EGF neutralizing antibody inhibited H2O2-induced EGF receptor phosphorylation. In COS-7 cells expressing an HB-EGF construct tagged with alkaline phosphatase, H2O2 stimulates HB-EGF production through metalloprotease activation. By contrast, dominant negative PKC-delta transfection inhibited H2O2-induced JAK2 phosphorylation but not EGF receptor phosphorylation. Dominant negative PYK2 inhibited H2O2-induced JAK2 activation but not EGF receptor activation, whereas dominant negative PKC-delta inhibited PYK2 activation by H2O2. These data demonstrate the presence of distinct tyrosine kinase activation pathways (PKC-delta/PYK2/JAK2 and metalloprotease/HB-EGF/EGF receptor) utilized by H2O2 in VSMCs, thus providing unique therapeutic targets for cardiovascular diseases.  相似文献   
135.
Retinoic acid (RA) regulates many of the chordate-specific and vertebrate-specific characters. These include the anteroposterior pattern of the dorsally located central nervous system, pharynx with gill slits, neural crest cells, limb morphogenesis and anteroposteriorly organized vertebrae. The necessity of endogenous RA and the RA receptor (RAR) has been demonstrated by mutant analyses, vitamin A-deficient animals and various other methods. Since RAR has been identified only in chordates, the acquisition of the RAR-mediated RA signaling pathway is thought to be an important event for the innovation of the chordate body plan. RA-synthesizing aldehyde dehydrogenases and RA-degrading enzymes also seem to be chordate-specific. The expression pattern of these genes in ascidian embryos is similar to that in vertebrate embryos. These results suggest that the RA signaling cascade, with various regulators and modifiers, had been already well established in the common chordate ancestor. RA also regulates morphogenesis during the asexual reproduction of ascidians, suggesting that RA may also have played a part in producing diversity within the chordate groups.  相似文献   
136.
Enzymatic transglycosylation using four possible monodeoxy analogs of p-nitrophenyl alpha-D-glucopyranoside (Glc alpha-O-pNP), modified at the C-2, C-3, C-4, and C-6 positions (2D-, 3D-, 4D-, and 6D-Glc alpha-O-pNP, respectively), as glycosyl donors and six equivalents of ethyl beta-D-thioglucopyranoside (Glc beta-S-Et) as a glycosyl acceptor, to yield the monodeoxy derivatives of glucooligosaccharides were done. The reaction was catalyzed using purified Aspergillus niger alpha-glucosidase in a mixture of 50 mM sodium acetate buffer (pH 4.0)/CH3CN (1:1 v/v) at 37 degrees C. High activity of the enzyme was observed in the reaction between 2D-Glc alpha-O-pNP and Glc beta-S-Et to afford the monodeoxy analogs of ethyl beta-thiomaltoside and ethyl beta-thioisomaltoside that contain a 2-deoxy alpha-D-glucopyranose moiety at their glycon portions, namely ethyl 2-deoxy-alpha-D-arabino-hexopyranosyl-(1,4)-beta-D-thioglucopyranoside and ethyl 2-deoxy-alpha-D-arabino-hexopyranosyl-(1,6)-beta-D-thioglucopyranoside, in 6.72% and 46.6% isolated yields (based on 2D-Glc alpha-O-pNP), respectively. Moreover, from 3D-Glc alpha-O-pNP and Glc beta-S-Et, the enzyme also catalyzed the synthesis of the 3-deoxy analog of ethyl beta-thioisomaltoside that was modified at the glycon alpha-D-glucopyranose moiety, namely ethyl 3-deoxy-alpha-D-ribo-hexopyranosyl-(1,6)-beta-D-thioglucopyranoside, in 23.0% isolated yield (based on 3D-Glc alpha-O-pNP). Products were not obtained from the enzymatic reactions between 4D- or 6D-Glc alpha-O-pNP and Glc beta-S-Et.  相似文献   
137.
To characterize the factors involved in the production of volatile aldehydes during mashing, a model mashing experiment was done. After we inactivated the endogenous lipoxygenase (LOX) activity in the mash by mashing at 70 degrees C for 30 min, further incubation with recombinant barley LOX-1 stimulated the accumulation of 2(E)-nonenal; however, this effect was significantly reduced by boiling the mash sample. The result suggests that both LOX-1 and a heat-stable enzymatic factor are involved in the production of 2(E)-nonenal during mashing. Malt contained fatty acid hydroperoxide lyase-like activity (HPL-like activity) that transformed 9-hydroperoxy-10(E), 12(Z)-octadecadienoic and 13-hydroperoxy-9(Z), 11(E)-octadecadienoic acid into 2(E)-nonenal and hexanal, respectively. Proteinase K sensitivity tests showed that they are distinct factors. 9-HPL-like activity survived through the mashing at 70 degrees C for 30 min but was inactivated by boiling, suggesting it will be the heat-stable enzymatic factor found in the model mashing experiment.  相似文献   
138.
139.
Takada H  Oda M  Oyamada A  Ohe K  Uemura S 《Chirality》2000,12(5-6):299-312
The copper-catalyzed diastereoselective imidation of diaryl sulfides bearing a chiral oxazolinyl moiety at the ortho-position with [N-(p-toluenesulfonyl) imino]phenyliodinane (TsN=IPh) or Chloramine-T trihydrate [TsN(Cl)Na.3H2O] was successfully carried out to give the corresponding optically active N-tosylsulfimides in good yields. For example, the imidation of diphenyl sulfide bearing a methoxymethyl moiety at the 4-position of the oxazoline ring with TsN(Cl)Na.3H2O in acetonitrile in the presence of 10 mol% Cu(OTf)2 at 25 degrees C for 24 h affords the corresponding optically active N-tosylsulfimide in 52% isolated yield with a high diastereoselectivity of 99%. Hydrolysis of the optically active N-p-tosylsulfimides converts them into the corresponding optically active sulfimides in high yields without loss of diastereoselectivity. These novel optically active sulfimides and N-tosylsulfimides work as efficient chiral ligands for palladium(II)-catalyzed allylic alkylation of 1, 3-diphenyl-3-acetoxy-1-propene with dimethyl malonate to give the corresponding alkylation product quantitatively and with a high stereoselectivity (up to 90% ee).  相似文献   
140.
Cardiovascular tissue injury in ischemia/reperfusion has been shown to be prevented by angiotensin-converting enzyme (ACE) inhibitors. However, the mechanism on endothelial cells has not been assessed in detail. Cultured human aortic endothelial cells (HAEC) were exposed to hypoxia with or without reoxygenation. Hypoxia enhanced apoptosis along with the activation of caspase-3. Reoxygenation increased lactate dehydrogenase release time-dependently, along with an increase of intracellular oxygen radicals. ACE inhibitor quinaprilat and bradykinin significantly lessened apoptosis and lactate dehydrogenase release with these effects being diminished by a kinin B2 receptor antagonist and a nitric oxide synthase inhibitor. In conclusion, hypoxia activated the suicide pathway leading to apoptosis of HAEC by enhancing caspase-3 activity, while subsequent reoxygenation induced necrosis by enhancing oxygen radical production. Quinaprilat could ameliorate both apoptosis and necrosis through the upregulation of constitutive endothelial nitric oxide synthase via an increase of bradykinin, with the resulting increase of nitric oxide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号