首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1585篇
  免费   88篇
  2022年   7篇
  2021年   10篇
  2020年   9篇
  2019年   13篇
  2018年   22篇
  2017年   16篇
  2016年   27篇
  2015年   53篇
  2014年   54篇
  2013年   103篇
  2012年   97篇
  2011年   106篇
  2010年   60篇
  2009年   71篇
  2008年   95篇
  2007年   100篇
  2006年   85篇
  2005年   102篇
  2004年   89篇
  2003年   95篇
  2002年   93篇
  2001年   24篇
  2000年   29篇
  1999年   33篇
  1998年   25篇
  1997年   29篇
  1996年   9篇
  1995年   21篇
  1994年   12篇
  1993年   18篇
  1992年   17篇
  1991年   13篇
  1990年   12篇
  1988年   7篇
  1987年   7篇
  1986年   8篇
  1985年   5篇
  1984年   13篇
  1983年   6篇
  1982年   6篇
  1981年   12篇
  1980年   7篇
  1979年   9篇
  1978年   5篇
  1976年   3篇
  1974年   6篇
  1973年   8篇
  1972年   4篇
  1971年   3篇
  1968年   3篇
排序方式: 共有1673条查询结果,搜索用时 62 毫秒
31.
Summary A hydrocarbon-rich green microalga, Botryococcus braunii, was able to grow well in secondarily treated sewage (STS) from domestic waste-water in a batch system. The growth in STS from domestic waste-water was as good as in the common artificial medium of modified Chu 13 and its hydrocarbon contents were high enough at 53% and 40% compared with 58% in the case of the modified Chu 13 medium. B. braunii utilized nitrate from 7.67 or 4.48 mg/l to a level below detection of < 0.01 mg/l in STS. After this consumption of nitrate, nitrite was consumed, and ammonium was not. Phosphate, even at an extremely low concentration, was also consumed by B. braunii. These results show the possibility of using STS as a medium to grow B. braunii and for removal of nitrogen and phosphorus by algal consumption in STS.Correspondence to: S. Yokoyama  相似文献   
32.
K Sakai  K Oshima    M Moriguchi 《Applied microbiology》1991,57(9):2540-2543
N-Acyl-D-glutamate amidohydrolase from Pseudomonas sp. strain 5f-1 was inducibly produced by D isomers of N-acetylglutamate, glutamate, aspartate, and asparagine. The enzyme has been purified to homogeneity by DEAE-cellulose, (NH4)2SO4 fractionation, and chromatofocusing followed by gel filtration on a Sephadex G-100 column. The enzyme was a monomer with molecular weight of 55,000. The enzyme activity was optimal at pH 6.5 to 7.5 and 45 degrees C. The isoelectric point and the pH stability were 8.8 and 9.0, respectively. N-Formyl, N-acetyl, N-butyryl, N-propionyl, N-chloroacetyl derivatives of D-glutamate and glycyl-D-glutamate were substrates for the enzyme. At pH 6.5 in 100 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) buffer at 30 degrees C, a Km of 6.67 mM and a Vmax of 662 mumol/min/mg of protein for N-acetyl-D-glutamate were obtained. None of the metal ions stimulated the enzyme activity. Na+, K+, Mg2+, and Ba2+ acted as stabilizers. Hg2+, Cu2+, Zn2+, Fe3+, and EDTA were strongly inhibitory.  相似文献   
33.
An NADH:(acceptor) oxidoreductase (EC 1.6.99.3) of human erythrocyte membrane was purified by DEAE-cellulose anion exchange, hydroxyapatite adsorption, and 5′-ADP-hexane-agarose affinity chromatographies after solubilization with Triton X-100. The purified reductase preparation was homogeneous and estimated to have an apparent molecular weight of 36,000 on SDS-polyacrylamide slab gel electrophoresis and of 144,000 on Sephadex G-200 gel filtration in the presence of 0.2% Triton X-100, whereas a soluble NADH-cytochrome b5 reductase of human erythrocyte had a molecular weight of 32,000 by both methods, indicating the existence of a distinct membrane reductase. Digestion of the membrane reductase with cathepsin D yielded a new polypeptide chain which gave the same relative mobility as the soluble reductase on SDS-polyacrylamide slab gel electrophoresis. The membrane enzyme, the cathepsin-digested enzyme, and the soluble enzyme all cross-reacted with the antibody to rat liver microsomal NADH-cytochrome b5 reductase. The enzyme had one mole FAD per 36,000 as a prosthetic group and could reduce K3Fe(CN)6, 2,6-dichlorophenolindophenol, cytochrome c, methemoglobin-ferrocyanide complex, cytochrome b5 and methemoglobin via cytochrome b5 when NADH was used as an electron donor. NADPH was less effective as an electron donor than NADH. The specific activity of the purified enzyme was 790 μmol ferricyanide reduced min?1 mg?1 and the turnover number was 40,600 mol ferricyanide reduced min?1 mol?1 FAD at 25 °C. The apparent Km values for NADH and cytochrome b5 were 0.6 and 20 μm, respectively, and the apparent V value was 270 μmol cytochrome b5 reduced min?1 mg?1. These kinetic properties were similar to those of the soluble NADH-cytochrome b5 reductase. The results indicate that the NADH:(acceptor) oxidoreductase of human erythrocyte membrane could be characterized as a membrane NADH-cytochrome b5 reductase.  相似文献   
34.
In primary culture of normal adult rat hepatocytes, human serum heated at 56°C for 30 min stimulated dose-dependently [3H]thymidine incorporation into trichloroacetic acid insoluble fraction of the cells, most of which was solubilized into hot trichloroacetic acid solution. The solubilized fraction was reduced when hydroxyurea was added to the culture. The heated serum also increased dose-dependently protein synthesis and cell viability determined from morphological findings. These results suggest that human serum has heat-stable factors stimulating DNA synthesis and maintaining cell viability of cultured rat hepatocytes.  相似文献   
35.
cis-3-Amino-l-proline, identified once as a nonprotein amino acid from the fruiting bodies of Morchella esculenta Fr., was isolated also from the growth medium and cultured mycelia of the same fungus.  相似文献   
36.
1. Both NADH and NADPH supported the oxidation of adrenaline to adrenochrome in bovine heart submitochondrial particles. The reaction was completely inhibited in the presence of superoxide dismutase, suggesting that superoxide anions (O(2) (-)) are responsible for the oxidation. The optimal pH of the reaction with NADPH was at pH7.5, whereas that with NADH was at pH9.0. The reaction was inhibited by treatment of the preparation with p-hydroxymercuribenzoate and stimulated by treatment with rotenone. Antimycin A and cyanide stimulated the reaction to the same extent as rotenone. The NADPH-dependent reaction was inhibited by inorganic salts at high concentrations, whereas the NADH-dependent reaction was stimulated. 2. Production of O(2) (-) by NADH-ubiquinone reductase preparation (Complex I) with NADH or NADPH as an electron donor was assayed by measuring the formation of adrenochrome or the reduction of acetylated cytochrome c which does not react with the respiratory-chain components. p-Hydroxymercuribenzoate inhibited the reaction and rotenone stimulated the reaction. The effects of pH and inorganic salts at high concentrations on the NADH- and NADPH-dependent reactions of Complex I were essentially similar to those on the reactions of submitochondrial particles. 3. These findings suggest that a region between a mercurialsensitive site and the rotenone-sensitive site of the respiratory-chain NADH dehydrogenase is largely responsible for the NADH- and NADPH-dependent O(2) (-) production by the mitochondrial inner membranes.  相似文献   
37.
Pyridinoline is an amino acid isolated from collagen and probably serves as a crosslink in collagen fiber. This compound was isolated on a large scale from bovine bone and investigated by 1H-nmr and 13C-nmr spectroscopy, mass spectroscopy and chemical degradation. The structure is proposed on the basis of these data.  相似文献   
38.
Shigeki Okayama 《BBA》1976,440(2):331-336
The redox potential of plastoquinone A in spinach chloroplasts was determined. The midpoint potential of the quinone is about +80 mV at pH 7.0 with an n value of 2. The pH-dependence of the potential is ?30 mV per pH between pH 4.0 and 5.7, and ?60 mV per pH between pH 5.7 and 8.0. The change of the slope at pH 5.7 is interpreted as the protonation of the oxidized plastoquinone A.  相似文献   
39.
40.
Journal of Plant Research - Cysteine biosynthesis is directed by the successive commitments of serine acetyltransferase, and O-acetylserine (thiol) lyase (OASTL) compounds, which subsequently frame...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号