首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1008篇
  免费   68篇
  2022年   4篇
  2021年   7篇
  2019年   6篇
  2018年   13篇
  2017年   5篇
  2016年   13篇
  2015年   29篇
  2014年   27篇
  2013年   79篇
  2012年   45篇
  2011年   40篇
  2010年   33篇
  2009年   27篇
  2008年   59篇
  2007年   57篇
  2006年   68篇
  2005年   61篇
  2004年   55篇
  2003年   51篇
  2002年   54篇
  2001年   33篇
  2000年   46篇
  1999年   25篇
  1998年   18篇
  1997年   10篇
  1996年   7篇
  1995年   8篇
  1994年   4篇
  1993年   10篇
  1992年   28篇
  1991年   19篇
  1990年   15篇
  1989年   15篇
  1988年   5篇
  1987年   5篇
  1986年   14篇
  1985年   6篇
  1984年   6篇
  1983年   8篇
  1982年   5篇
  1980年   3篇
  1979年   7篇
  1978年   5篇
  1975年   7篇
  1974年   2篇
  1973年   9篇
  1972年   3篇
  1971年   2篇
  1968年   5篇
  1967年   3篇
排序方式: 共有1076条查询结果,搜索用时 109 毫秒
981.
Under a moderately heat-stressed condition, the photosystems of higher plants are damaged in the dark more easily than they are in the presence of light. To obtain a better understanding of this heat-derived damage mechanism that occurs in the dark, we focused on the involvement of the light-independent electron flow that occurs at 40 °C during the damage. In various plant species, the maximal photochemical quantum yield of photosystem (PS) II (Fv/Fm) decreased as a result of heat treatment in the dark. In the case of wheat, the most sensitive plant species tested, both Fv/Fm and oxygen evolution rapidly decreased by heat treatment at 40 °C for 30 min in the dark. In the damage, specific degradation of D1 protein was involved, as shown by immunochemical analysis of major proteins in the photosystem. Because light canceled the damage to PSII, the light-driven electron flow may play a protective role against PSII damage without light. Light-independent incorporation of reducing power from stroma was enhanced at 40 °C but not below 35 °C. Arabidopsis mutants that have a deficit of enzymes which mediate the incorporation of stromal reducing power into thylakoid membranes were tolerant against heat treatment at 40 °C in the dark, suggesting that the reduction of the plastoquinone pool may be involved in the damage. In conclusion, the enhanced introduction of reducing power from stroma into thylakoid membranes that occurs around 40 °C causes over-reduction of plastoquinone, resulting in the damage to D1 protein under heat stress without linear electron flow.  相似文献   
982.
Marker rescue is an important molecular technique that enables sequential gene deletions. The Cre-loxP recombination system has been used for marker gene rescue in various organisms, including aspergilli. However, this system requires many time-consuming steps, including construction of a Cre expression plasmid, introduction of the plasmid, and Cre expression in the transformant. To circumvent this laborious process, we investigated a method wherein Cre could be directly introduced into Aspergillus oryzae protoplasts on carrier DNA such as a fragment or plasmid. In this study, we define the carrier DNA (Cre carrier) as a carrier for the Cre enzyme. A mixture of commercial Cre and nucleic acids (e.g., pUG6 plasmid) was introduced into A. oryzae protoplasts using a modified protoplast-polyethylene glycol method, resulting in the deletion of a selectable marker gene flanked by loxP sites. By using this method, we readily constructed a marker gene-rescued strain lacking ligD to optimize homologous recombination. Furthermore, we succeeded in integrative recombination at a loxP site in A. oryzae. Thus, we developed a simple method to use the Cre-loxP recombination system in A. oryzae by direct introduction of Cre into protoplasts using DNA as a carrier for the enzyme.  相似文献   
983.
984.
Brassinosteroids (BRs) are steroidal phytohormones that regulate plant growth and development. Whereas in Arabidopsis the network-like routes of BR biosynthesis have been elucidated in considerable detail, the roles of some of the biosynthetic enzymes and their participation in the different subpathways remained to be clarified. We investigated the function of the cytochrome P450 monooxygenase CYP90A1/CPD, which earlier had been proposed to act as a BR C-23 hydroxylase. Our GC-MS and genetic analyses demonstrated that the cpd mutation arrests BR synthesis upstream of the DET2-mediated 5α reduction step and that overexpression of the C-23 hydroxylase CYP90C1 does not alleviate BR deficiency in the cpd mutant. In line with these results, we found that CYP90A1/CPD heterologously expressed in a baculovirus-insect cell system catalyzes C-3 oxidation of the early BR intermediates (22S)-22-hydroxycampesterol and (22R,23R)-22,23-dihydroxycampesterol, as well as of 6-deoxocathasterone and 6-deoxoteasterone. Enzyme kinetic data of CYP90A1/CPD and DET2, together with those of the earlier studied CYP90B1, CYP90C1, and CYP90D1, suggest that BR biosynthesis proceeds mainly via the campestanol-independent pathway.  相似文献   
985.
986.
The Er:YAG laser is currently used for bone ablation. However, the effect of Er:YAG laser irradiation on bone healing remains unclear. The aim of this study was to investigate bone healing following ablation by laser irradiation as compared with bur drilling. Rat calvarial bone was ablated using Er:YAG laser or bur with water coolant. Er:YAG laser effectively ablated bone without major thermal changes. In vivo micro‐computed tomography analysis revealed that laser irradiation showed significantly higher bone repair ratios than bur drilling. Scanning electron microscope analysis showed more fibrin deposition on laser‐ablated bone surfaces. Microarray analysis followed by gene set enrichment analysis revealed that IL6/JAK/STAT3 signaling and inflammatory response gene sets were enriched in bur‐drilled bone at 6 hours, whereas the E2F targets gene set was enriched in laser‐irradiated bone. Additionally, Hspa1a and Dmp1 expressions were increased and Sost expression was decreased in laser‐irradiated bone compared with bur‐drilled bone. In granulation tissue formed after laser ablation, Alpl and Gblap expressions increased compared to bur‐drilled site. Immunohistochemistry showed that osteocalcin‐positive area was increased in the laser‐ablated site. These results suggest that Er:YAG laser might accelerate early new bone formation with advantageous surface changes and cellular responses for wound healing, compared with bur‐drilling.   相似文献   
987.
The LolCDE complex of Escherichia coli releases outer membrane-specific lipoproteins from the inner membrane. Lipoproteins with Asp at + 2 remain in the inner membrane since this residue functions as a LolCDE avoidance signal depending on phosphatidylethanolamine. We examined the effects of other phospholipids on lipoprotein sorting in proteoliposomes reconstituted with LolCDE and various synthetic phospholipids. The lipoprotein release and ATP hydrolysis were both low at 2 mM Mg2+ but very high at 10 mM Mg2+ in proteoliposomes containing cardiolipin alone. However, the Lol avoidance function was abolished at 10 mM Mg2+, and the release of lipoproteins with Asp at + 2 was as efficient as that of outer membrane-specific lipoproteins. The addition of phosphatidylethanolamine to cardiolipin stimulated the ATP hydrolysis and increased the Lol avoidance function of Asp at + 2 at 2 mM Mg2+. The addition of phosphatidylglycerol to cardiolipin nearly completely inhibited the release of lipoproteins with Asp at + 2 even at 10 mM Mg2+, while that of outer membrane-specific lipoproteins was not. Taken together, these results indicate that three major phospholipids of E. coli differently affect lipoprotein sorting and the activity of LolCDE.  相似文献   
988.
The LolCDE complex of Escherichia coli releases outer membrane-specific lipoproteins from the inner membrane. Lipoproteins with Asp at +2 remain in the inner membrane since this residue functions as a LolCDE avoidance signal depending on phosphatidylethanolamine. We examined the effects of other phospholipids on lipoprotein sorting in proteoliposomes reconstituted with LolCDE and various synthetic phospholipids. The lipoprotein release and ATP hydrolysis were both low at 2 mM Mg(2+) but very high at 10 mM Mg(2+) in proteoliposomes containing cardiolipin alone. However, the Lol avoidance function was abolished at 10 mM Mg(2+), and the release of lipoproteins with Asp at +2 was as efficient as that of outer membrane-specific lipoproteins. The addition of phosphatidylethanolamine to cardiolipin stimulated the ATP hydrolysis and increased the Lol avoidance function of Asp at +2 at 2 mM Mg(2+). The addition of phosphatidylglycerol to cardiolipin nearly completely inhibited the release of lipoproteins with Asp at +2 even at 10 mM Mg(2+), while that of outer membrane-specific lipoproteins was not. Taken together, these results indicate that three major phospholipids of E. coli differently affect lipoprotein sorting and the activity of LolCDE.  相似文献   
989.
HemAT-Bs is the heme-based O(2) sensor responsible for aerotaxis control in Bacillus subtilis. In this study, we measured the time-resolved resonance Raman spectra of full-length HemAT-Bs wild-type (WT) and Y133F in the deoxy form and the photoproduct after photolysis of CO-bound form. In WT, the nu(Fe-His) band for the 10 ps photoproduct was observed at higher frequency by about 2 cm(-1) compared with that of the deoxy form. This frequency difference is relaxed in hundreds of picoseconds. This time-dependent frequency shift would reflect the conformational change of the protein matrix. On the other hand, Y133F mutant did not show such a substantial nu(Fe-His) frequency shift after photolysis. Since a hydrogen bond to the proximal His induces an up-shift of the nu(Fe-His) frequency, these results indicate that Tyr133 forms a hydrogen bond to the proximal His residue upon the ligand binding. We discuss a functional role of this hydrogen bond formation for the signal transduction in HemAT-Bs.  相似文献   
990.
We examined the relationship between changes in cardiorespiratory and cerebrovascular function in 14 healthy volunteers with and without hypoxia [arterial O(2) saturation (Sa(O(2))) approximately 80%] at rest and during 60-70% maximal oxygen uptake steady-state cycling exercise. During all procedures, ventilation, end-tidal gases, heart rate (HR), arterial blood pressure (BP; Finometer) cardiac output (Modelflow), muscle and cerebral oxygenation (near-infrared spectroscopy), and middle cerebral artery blood flow velocity (MCAV; transcranial Doppler ultrasound) were measured continuously. The effect of hypoxia on dynamic cerebral autoregulation was assessed with transfer function gain and phase shift in mean BP and MCAV. At rest, hypoxia resulted in increases in ventilation, progressive hypocapnia, and general sympathoexcitation (i.e., elevated HR and cardiac output); these responses were more marked during hypoxic exercise (P < 0.05 vs. rest) and were also reflected in elevation of the slopes of the linear regressions of ventilation, HR, and cardiac output with Sa(O(2)) (P < 0.05 vs. rest). MCAV was maintained during hypoxic exercise, despite marked hypocapnia (44.1 +/- 2.9 to 36.3 +/- 4.2 Torr; P < 0.05). Conversely, hypoxia both at rest and during exercise decreased cerebral oxygenation compared with muscle. The low-frequency phase between MCAV and mean BP was lowered during hypoxic exercise, indicating impairment in cerebral autoregulation. These data indicate that increases in cerebral neurogenic activity and/or sympathoexcitation during hypoxic exercise can potentially outbalance the hypocapnia-induced lowering of MCAV. Despite maintaining MCAV, such hypoxic exercise can potentially compromise cerebral autoregulation and oxygenation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号