首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   23篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   4篇
  2014年   3篇
  2013年   9篇
  2012年   6篇
  2011年   8篇
  2010年   4篇
  2009年   4篇
  2008年   5篇
  2007年   4篇
  2006年   9篇
  2005年   1篇
  2004年   4篇
  2003年   5篇
  2002年   7篇
  2001年   3篇
  2000年   5篇
  1999年   8篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1992年   4篇
  1991年   6篇
  1990年   5篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1917年   2篇
  1913年   2篇
  1909年   2篇
  1905年   2篇
排序方式: 共有159条查询结果,搜索用时 31 毫秒
91.
Soil factors predict initial plant colonization on Puerto Rican landslides   总被引:1,自引:0,他引:1  
Tropical storms are the principal cause of landslides in montane rainforests, such as the Luquillo Experimental Forest (LEF) of Puerto Rico. A storm in 2003 caused 30 new landslides in the LEF that we used to examine prior hypotheses that slope stability and organically enriched soils are prerequisites for plant colonization. We measured slope stability and litterfall 8–13 months following landslide formation. At 13 months we also measured microtopography, soil characteristics (organic matter, particle size, total nitrogen, and water-holding capacity), elevation, distance to forest edge, and canopy cover. When all landslides were analyzed together, plant biomass and cover at 13 months were not correlated with slope stability or organic matter, but instead with soil nitrogen, clay content, water-holding capacity, and elevation. When landslides were analyzed after separating by soil type, the distance from the forest edge and slope stability combined with soil factors (excluding organic matter) predicted initial plant colonization on volcaniclastic landslides, whereas on diorite landslides none of the measured characteristics affected initial plant colonization. The life forms of the colonizing plants reflected these differences in landslide soils, as trees, shrubs, and vines colonized high clay, high nitrogen, and low elevation volcaniclastic soils, whereas herbs were the dominant colonists on high sand, low nitrogen, and high elevation diorite soils. Therefore, the predictability of the initial stage of plant succession on LEF landslides is primarily determined by soil characteristics that are related to soil type.  相似文献   
92.
Elasmobranchs are key to a healthy marine ecosystem but are under threat from human activities, such as destructive fisheries and shark finning. Embryos of oviparous elasmobranchs may be further challenged during development by rising temperatures and falling dissolved oxygen concentrations in their intertidal environment. However, the impact of climate change on survival and growth of oviparous elasmobranchs is still poorly understood. Here, we investigate the effects of temperature and hypoxia on the growth and survival of small-spotted catshark (Scyliorhinus canicula) embryos by incubating eggs in normoxia 15°C, normoxia 20°C, hypoxia 15°C, or hypoxia 20°C. Incubation under the elevated temperature increased the embryonic growth rate, yolk consumption rate and Fulton's condition factor at hatching, whilst decreasing the total length and body mass of newly hatched sharks. Under low oxygen conditions (50% air saturation) the survival rate of S. canicula embryos dropped significantly and the temperature-induced increase in Fulton's condition factor was reversed. Together, these data demonstrate both the individual and compound effects of elevated temperature and hypoxia on the survival and growth during early ontogeny of a ubiquitous, coastal elasmobranch, S. canicula.  相似文献   
93.
An isometric muscle preparation was used to study the inhibitory effect of ryanodine on contractile function in isolated ventricular trabeculae of the Pacific mackerel (Scomber japonicus). Ryanodine (an inhibitor of sarcoplasmic reticulum (SR) function) caused a 20% reduction in peak tension at 20 degrees C, but not 15 degrees C, over the range of frequencies (0.2-3.0 Hz) tested. This indicates that in the absence of a functional SR, the mackerel ventricle can maintain most of its contractile strength utilizing other modes of Ca(2+) delivery to the myofilaments. Ca(2+) flux through the sarcolemmal (SL) L-type Ca(2+)-channels is most likely the predominant pathway for Ca(2+) activation of the myofilaments, although reverse mode Na(+)/Ca(2+) exchange could potentially contribute to a significant extent. High levels of adrenergic stimulation overwhelmed the negative inotropy caused by ryanodine, returning tension to pre-ryanodine levels, further suggesting that the mackerel ventricle can maintain contractile function without Ca(2+) contribution from the SR. These results are discussed within the context of what is known about SR Ca(2+) utilization in rainbow trout and tuna hearts.  相似文献   
94.
95.
Oceanic islands have been colonized by numerous non-native and invasive plants and animals. An understanding of the degree to which introduced rats (Rattus spp.) may be spreading or destroying seeds of invasive plants can improve our knowledge of plant-animal interactions, and assist efforts to control invasive species. Feeding trials in which fruits and seeds were offered to wild-caught rats were used to assess the effects of the most common rat, the black rat (R. rattus), on 25 of the most problematic invasive plant species in the Hawaiian Islands. Rats ate pericarps (fruit tissues) and seeds of most species, and the impacts on these plants ranged from potential dispersal of small-seeded (≤1.5 mm length) species via gut passage (e.g., Clidemia hirta, Buddleia asiatica, Ficus microcarpa, Miconia calvescens, Rubus rosifolius) to predation where <15% of the seeds survived (e.g., Bischofia javanica, Casuarina equisetifolia, Prosopis pallida, Setaria palmifolia). Rats consumed proportionally more seed mass of the smaller fruits and seeds than the larger ones, but fruit and seed size did not predict seed survival following rat interactions. Although invasive rat control efforts focus on native species protection, non-native plant species, especially those with small seeds that may pass internally through rats, also deserve rat control in order to help limit the spread of such seeds. Black rats may be facilitating the spread of many of the most problematic invasive plants through frugivory and seed dispersal in Hawaii and in other ecosystems where rats and plants have been introduced.  相似文献   
96.

Background

Cellular senescence may be a key factor in HIV-related premature biological aging. We assessed features of the corneal endothelium that are known to be associated with biological aging, and cellular senescence markers in HIV-infected adults.

Methods

Case-control study of 242 HIV-infected adults and 249 matched controls. Using specular microscopy, the corneal endothelium was assessed for features of aging (low endothelial cell density [ECD], high variation in cell size, and low hexagonality index). Data were analysed by multivariable regression. CDKN2A expression (a cell senescence mediator) was measured in peripheral blood leukocytes and 8-hydroxy-2′-deoxyguanosine (8-OHDG; an oxidative DNA damage marker) levels were measured in plasma.

Results

The median age of both groups was 40 years. Among HIV-infected adults, 88% were receiving antiretroviral therapy (ART); their median CD4 count was 468 cells/µL. HIV infection was associated with increased odds of variation in cell size (OR = 1.67; 95% CI: 1.00–2.78, p = 0.04). Among HIV-infected participants, low ECD was independently associated with current CD4 count <200 cells/µL (OR = 2.77; 95%CI: 1.12–6.81, p = 0.03). In participants on ART with undetectable viral load, CDKN2A expression and 8-OHDG levels were higher in those with accelerated aging, as reflected by lower ECD.

Conclusions

The corneal endothelium shows features consistent with HIV-related accelerated senescence, especially among those with poor immune recovery.  相似文献   
97.
Non-native herbivores may alter plant communities through their preferential consumption of seedlings of different species. We assessed seedling herbivory by two invasive gastropod species in Hawaii, the giant African snail (Achatina fulica) and the Cuban brown slug (Veronicella cubensis). We hypothesized that six native species would suffer greater gastropod herbivory than four non-native species, and that species with short stature, thin leaves, and lacking physical defenses would suffer the greatest mortality from gastropods. Herbivory was measured during 13-day preference trials using enclosures that each contained four different woody species (two native, two non-native) and were assigned to one of three treatments: giant African snail, Cuban brown slug, or control (no gastropod). Discriminant function analysis was used to predict gastropod-induced seedling mortality from a suite of seedling characteristics. Native species did not always experience greater herbivory than non-natives species, and seedling mortality was 0–100 %. Native Pipturus albidus and Clermontia parviflora suffered 100 % mortality from V. cubensis herbivory, and P. albidus, Psychotria hawaiiensis, and Myrsine lessertiana suffered ≥80 % mortality from A. fulica. Two non-natives (Fraxinus uhdei, Clidemia hirta), and two natives (Metrosideros polymorpha, Diospyros sandwicensis), suffered little damage and no mortality. Non-native Ardisia elliptica suffered 10–30 % gastropod mortality, and non-native Psidium cattleianum mortality was 0–50 %. Leaf thickness best predicted species mortality caused by slugs and snails; some thicker-leaved species suffered most. Invasive snails and slugs threaten some native and non-native seedlings by directly consuming them. Current and future plant community structure in Hawaii may in part reflect the feeding preferences of invasive gastropods.  相似文献   
98.
99.
100.
The nematode Angiostrongylus cantonensis is a rat lungworm, a zoonotic pathogen that causes human eosinophilic meningitis and ocular angiostrongyliasis characteristic of rat lungworm (RLW) disease. Definitive diagnosis is made by finding and identifying A. cantonensis larvae in the cerebral spinal fluid or by using a custom immunological or molecular test. This study was conducted to determine if genomic DNA from A. cantonensis is detectable by qPCR in the blood or tissues of experimentally infected rats. F1 offspring from wild rats were subjected to experimental infection with RLW larvae isolated from slugs, then blood or tissue samples were collected over multiple time points. Blood samples were collected from 21 rats throughout the course of two trials (15 rats in Trial I, and 6 rats in Trial II). In addition to a control group, each trial had two treatment groups: the rats in the low dose (LD) group were infected by approximately 10 larvae and the rats in the high dose (HD) group were infected with approximately 50 larvae. In Trial I, parasite DNA was detected in cardiac bleed samples from five of five LD rats and five of five HD rats at six weeks post-infection (PI), and three of five LD rats and five of five HD rats from tail tissue. In Trial II, parasite DNA was detected in peripheral blood samples from one of two HD rats at 53 minutes PI, one of two LD rats at 1.5 hours PI, one of two HD rats at 18 hours PI, one of two LD rats at five weeks PI and two of two at six weeks PI, and two of two HD rats at weeks five and six PI. These data demonstrate that parasite DNA can be detected in peripheral blood at various time points throughout RLW infection in rats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号