首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   422篇
  免费   60篇
  国内免费   1篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   7篇
  2017年   3篇
  2016年   8篇
  2015年   20篇
  2014年   10篇
  2013年   12篇
  2012年   27篇
  2011年   27篇
  2010年   32篇
  2009年   21篇
  2008年   22篇
  2007年   21篇
  2006年   14篇
  2005年   15篇
  2004年   13篇
  2003年   20篇
  2002年   14篇
  2001年   8篇
  2000年   9篇
  1999年   24篇
  1998年   8篇
  1997年   7篇
  1996年   8篇
  1995年   8篇
  1994年   7篇
  1993年   4篇
  1992年   8篇
  1991年   12篇
  1990年   5篇
  1989年   9篇
  1988年   7篇
  1987年   7篇
  1986年   3篇
  1985年   6篇
  1984年   7篇
  1982年   6篇
  1981年   6篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1975年   4篇
  1974年   2篇
  1973年   2篇
  1969年   2篇
  1967年   2篇
  1966年   2篇
排序方式: 共有483条查询结果,搜索用时 17 毫秒
61.
62.
Efforts to emulate the formidable information processing capabilities of the brain through neuromorphic engineering have been bolstered by recent progress in the fabrication of nonlinear, nanoscale circuit elements that exhibit synapse-like operational characteristics. However, conventional fabrication techniques are unable to efficiently generate structures with the highly complex interconnectivity found in biological neuronal networks. Here we demonstrate the physical realization of a self-assembled neuromorphic device which implements basic concepts of systems neuroscience through a hardware-based platform comprised of over a billion interconnected atomic-switch inorganic synapses embedded in a complex network of silver nanowires. Observations of network activation and passive harmonic generation demonstrate a collective response to input stimulus in agreement with recent theoretical predictions. Further, emergent behaviors unique to the complex network of atomic switches and akin to brain function are observed, namely spatially distributed memory, recurrent dynamics and the activation of feedforward subnetworks. These devices display the functional characteristics required for implementing unconventional, biologically and neurally inspired computational methodologies in a synthetic experimental system.  相似文献   
63.
Novel pyrazine carboxamides bearing hydrophilic poly(ethylene glycol) (PEG) moieties were designed, synthesized, and evaluated for use as fluorescent glomerular filtration rate (GFR) tracer agents. Among these, compounds 4d and 5c that contain about 48 ethylene oxide units in the PEG chain exhibited the most favorable physicochemical and renal clearance properties. In vitro studies show that these two compounds have low plasma protein binding, a necessary condition for renal excretion. In vivo animal model results show that 4d and 5c have a higher urine recovery of the injected dose than iothalamate (a commonly considered gold standard GFR agent). Pharmacokinetic studies show that these two compounds exhibit a plasma clearance equivalent to iothalamate, but with a faster (i.e. lower) terminal half-life than iothalamate (possibly from restricted distribution into the extracellular space due to large molecular size and hydrodynamic volume). Furthermore, the plasma clearance of 4d and 5c remained unchanged upon blockage of the tubular secretion pathway with probenecid, a necessary condition for establishment of clearance via glomerular filtration exclusively. Finally, noninvasive real-time monitoring of this class of compounds was demonstrated by pharmacokinetic clearance of 5c by optical measurements in rat model, which correlates strongly with plasma concentration of the tracer. Hence, 4d and 5c are promising candidates for translation to the clinic as exogenous fluorescent tracer agents in real-time point-of-care monitoring of GFR.  相似文献   
64.
65.
Chou WC  Wang HC  Wong FH  Ding SL  Wu PE  Shieh SY  Shen CY 《The EMBO journal》2008,27(23):3140-3150
The DNA damage response (DDR) has an essential function in maintaining genomic stability. Ataxia telangiectasia-mutated (ATM)-checkpoint kinase 2 (Chk2) and ATM- and Rad3-related (ATR)-Chk1, triggered, respectively, by DNA double-strand breaks and blocked replication forks, are two major DDRs processing structurally complicated DNA damage. In contrast, damage repaired by base excision repair (BER) is structurally simple, but whether, and how, the DDR is involved in repairing this damage is unclear. Here, we demonstrated that ATM-Chk2 was activated in the early response to oxidative and alkylation damage, known to be repaired by BER. Furthermore, Chk2 formed a complex with XRCC1, the BER scaffold protein, and phosphorylated XRCC1 in vivo and in vitro at Thr(284). A mutated XRCC1 lacking Thr(284) phosphorylation was linked to increased accumulation of unrepaired BER intermediate, reduced DNA repair capacity, and higher sensitivity to alkylation damage. In addition, a phosphorylation-mimic form of XRCC1 showed increased interaction with glycosylases, but not other BER proteins. Our results are consistent with the phosphorylation of XRCC1 by ATM-Chk2 facilitating recruitment of downstream BER proteins to the initial damage recognition/excision step to promote BER.  相似文献   
66.
We report a novel weathering mechanism in South African sandstone formations, where cryptoendolithic cyanobacteria induce weathering by substrate alkalization during photosynthesis. As a result, the upper rock part is loosened and then eroded away by physical forces such as wind, water, trampling. This special type of ‘exfoliation’ is widely distributed and affects the geomorphology of whole sandstone mountain ranges and outcrops across several biomes. We show, that this weathering type is initiated by bioalkalization because of the photosynthesis of cryptoendolithic (i.e. those organisms living in small tight open spaces between the sand grains) cyanobacteria causing pH values high enough to enhance silica solution in the cryptoendolithic zone. As modern cyanobacteria are the initial photoautotrophic colonizers of bare rocks in arid and semiarid landscapes, it is possible that they may also have played a significant role in shaping sandstone landscapes in the geological past.  相似文献   
67.
Benzophenone is an ultraviolet (UV)-absorbing agent that has been used in industry and medicine for more than 30 years. Consumers of cosmetics and sunscreens containing UV-absorbers are exposed to benzophenones on a daily basis, owing to the widespread use of these compounds. However, the efficacy of these compounds as scavengers of oxidative stress is still not well established. In the present study, we investigate the antioxidative capacity of six sunscreen benzophenone compounds. A primary myoblast culture was mixed in vitro with 100 microM menadione. The cytotoxic effect by menadione-induced oxidative stress was monitored by the lucigenin- or luminol-amplified chemiluminescence, methylthiotetrazole (MTT) assay, and the antioxidative effects of various benzophenone compounds were evaluated. The results showed that the addition of menadione can induce oxidative stress on myoblasts by superoxide and hydrogen peroxide production, which can be eradicated by superoxide dismutase (SOD) and catalase, respectively, in a dose-dependent mode. The catalase has a protective effect on the cytotoxicity induced by menadione as measured by the MTT assay, while the SOD does not. The selected benzophenones also have a significant scavenging effect on the menadione-induced cell death on the myoblasts. The ortho-dihydroxyl structure and other hydroxy groups in the same ring have a stronger scavenging effect on the superoxide anion on myoblasts; thus, a stable penoxy radical may be formed. The mechanism of this effect remains to be clarified.  相似文献   
68.
Elaborate horns or horn‐like structures in male scarab beetles commonly scale with body size either (a) in a linear fashion with horn size increasing relatively faster than body size or (b) in a threshold‐dependent, sigmoid fashion; that is, males smaller than a certain critical body size develop no or only rudimentary horns, whereas males larger than the threshold size express fully developed horns. The development of linear vs. sigmoid scaling relationships is thought to require fundamentally different regulatory mechanisms. Here we show that such disparate regulatory mechanisms may co‐occur in the same individual. Large males of the south‐east Asian Onthophagus (Proagoderus) watanabei (Ochi & Kon) (Scarabaeidae, Onthophagini) develop a pair of long, curved head horns as well as a single thoracic horn. We show that unlike paired head horns in a large number of Onthophagus species, in O. watanabei the relationship between head horns and body size is best explained by a linear model. Large males develop disproportionately longer horns than small males, but the difference in relative horn sizes across the range of body sizes is small compared to other Onthophagus species. However, the scaling relationship between the thoracic horn and body size is best explained by a strongly sigmoid model. Only males above a certain body size threshold express a thoracic horn and males smaller than this threshold express no horn at all. We found a significant positive correlation between head and thoracic horn length residuals, contrary to what would be expected if a resource allocation tradeoff during larval development would influence the length of both horn types. Our results suggest that the scaling relationship between body size and horn length, and the developmental regulation underlying these scaling relationships, may be quite different for different horns, even though these horns may develop in the same individual. We discuss our results in the context of the developmental biology of secondary sexual traits in beetles. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 83 , 473–480.  相似文献   
69.
The role of human immunodeficiency virus (HIV) strain variability remains a key unanswered question in HIV dementia, a condition affecting around 20% of infected individuals. Several groups have shown that viruses within the central nervous system (CNS) of infected patients constitute an independently evolving subset of HIV strains. A potential explanation for the replication and sequestration of viruses within the CNS is the preferential use of certain chemokine receptors present in microglia. To determine the role of specific chemokine coreceptors in infection of adult microglial cells, we obtained a small panel of HIV type 1 brain isolates, as well as other HIV strains that replicate well in cultured microglial cells. These viruses and molecular clones of their envelopes were used in infections, in cell-to-cell fusion assays, and in the construction of pseudotypes. The results demonstrate the predominant use of CCR5, at least among the major coreceptors, with minor use of CCR3 and CXCR4 by some of the isolates or their envelope clones.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号