首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   9篇
  77篇
  2022年   1篇
  2021年   3篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   6篇
  2013年   1篇
  2011年   3篇
  2010年   6篇
  2009年   7篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1998年   3篇
  1997年   2篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1989年   1篇
  1986年   1篇
  1982年   1篇
  1980年   2篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
21.
In vitro culture for bovine embryos is largely not optimal. Our study was to determine the components necessary for early embryo development. In experiment 1, IVF embryos were cultured for two days in CR1aa medium containing sodium citrate and BSA from two sources (Sigma vs. ICPbio), subsequently for additional five days with cumulus monolayer in 10% FBS CR1aa. We found that supplementation with both Sigma-BSA and sodium citrate significantly increased total blastocyst (BL) development compared with the ICPbio-BSA groups (37% vs. 19-21%), and enhanced the total number of high quality (C1 BL, IETS standard) blastocysts (26% vs. 11-17%) (P < 0.05). In experiment 2 with serum free and/or somatic free culture, we found that CR1aa culture can support a comparable embryo development with a supplement of Sigma BSA. The addition of sodium citrate did not increase blastocyst development in either the Sigma-BSA or the ICPbio-BSA groups. An inferior blastocyst development occurring in ICPbio-BSA culture (1-3%) could be rescued by culture in CRlaa supplemented with 10% FBS (29%), more importantly, by culture in CR1aa with a replacement of Sigma BSA (24%) (P <0.05). C1 blastocysts rescued by FBS and Sigma BSA in ICPbio-BSA culture possessed indistinguishable morphology to embryos developed in a Sigma-BSA, FBS and somatic co-culture system, showing similar cell number/blastocyst (129-180, P > 0.05). Our study found a beneficial effect of sodium citrate and BSA on the in vitro development of bovine IVF embryos during co-culture. We also determined that differential embryotrophic factor(s) contained in BSA and serum, probably not sodium citrate, is necessary for promoting competent morula and blastocyst development in cattle.  相似文献   
22.
23.
Toll‐like receptors (TLR) recognize pathogens and trigger the production of vigorous pro‐inflammatory cytokines [such as tumour necrosis factor (TNF)] that induce systemic damages associated with sepsis and chronic inflammation. Cooperation between signals of TLR and TNF receptor has been demonstrated through the participation of TNF receptor 1 (TNFR) adaptors in endotoxin tolerance. Here, we identify a TLR2‐mediated synergy, through a MyD88‐independent crosstalk, which enhances subsequent TNF‐mediated nuclear factor‐kappa B activation and interleukin‐6 induction. Membrane‐associated adaptor MAL conduces the link between TNF receptor‐associated factor 6 (TRAF6) and TNFR‐associated death domain, leading to a distinctive K63‐ubiquitinylated TRAF6 recruitment into TNFR complex. In summary, our results reveal a novel route of TLR signal that synergistically amplifies TNF‐mediated responses, indicating an innovative target for inflammation manipulation.  相似文献   
24.
There are many factors affecting the efficiency of nuclear transfer technology. Some are evaluated here using our novel approach by enucleating oocytes at 20–22 hr after in vitro maturation (IVM), culturing the enucleated oocytes (cytoplasts) for 8–10 hr or 18–20 hr to gain activation competence and then conducting nuclear transfer. In the first experiment, we demonstrated that cumulus cell (CC) monolayer can support some cloned embryos to develop into morulae or blastocysts. Co-culture with CC and bovine oviduct epithelial cell (BOEC) monolayers resulted in no differences (P 0.05) in supporting the development of cloned embryos (Experiment 2). When in vitro matured oocytes were enucleated at 22 hr after IVM followed by nuclear transfer 18–20 hr later, cleavage and morula or blastocyst development of the cloned embryos were similar to those resulting from the enucleated oocytes which had been matured in vivo (Experiment 3). Frozen embryos as nuclear donor cells worked equally well as fresh embryos for cloning in embryo development which was superior to IVF embryos (Experiment 4). However, fresh embryos resulted in a higher proportion (P < 0.05) of blastomere recovery than did frozen or IVF ambryos. Finally, embryo transfer of cloned embryos from our procedure produced a viable calf, demonstrating the commercial value of this novel approach of the technology. © 1993 Wiley-Liss, Inc.  相似文献   
25.
We report the nucleotide sequence of a cloned cDNA, pMTS-3, that contains a 1-kb insert corresponding to mouse thymidylate synthase (E.C. 2.1.1.45). The open reading frame of 921 nucleotides from the first AUG to the termination codon specifies a protein with a molecular mass of 34,962 daltons. The predicted amino acid sequence is 90% identical with that of the human enzyme. The mouse sequence also has an extremely high degree of similarity (as much as 55% identity) with prokaryotic thymidylate synthase sequences, indicating that thymidylate synthase is among the most highly conserved proteins studied to date. The similarity is especially pronounced (as much as 80% identity) in the 44-amino-acid region encompassing the binding site for deoxyuridylic acid. The cDNA sequence also suggests that mouse thymidylate synthase mRNA lacks a 3' untranslated region, since the termination codon, UAA, is followed immediately by a poly(A) segment.   相似文献   
26.

Background

Insufficient clearance of soluble oligomeric amyloid-β peptide (oAβ) in the central nervous system leads to the synaptic and memory deficits in Alzheimer''s disease (AD). Previously we have identified scavenger receptor class A (SR-A) of microglia mediates oligomeric amyloid-β peptide (oAβ) internalization by siRNA approach. SR-A is a member of cysteine-rich domain (SRCR) superfamily which contains proteins actively modulating the innate immunity and host defense, however the functions of the SRCR domain remain unclear. Whether the SRCR domain of SR-AI modulates the receptor surface targeting and ligand internalization was investigated by expressing truncated SR-A variants in COS-7 cells. Surface targeting of SR-A variants was examined by live immunostaining and surface biotinylation assays. Transfected COS-7 cells were incubated with fluorescent oAβ and acetylated LDL (AcLDL) to assess their ligand-internalization capabilities.

Result

Genetic ablation of SR-A attenuated the internalization of oAβ and AcLDL by microglia. Half of oAβ-containing endocytic vesicles was SR-A positive in both microglia and macrophages. Clathrin and dynamin in SR-AI-mediated oAβ internalization were involved. The SRCR domain of SR-AI is encoded by exons 10 and 11. SR-A variants with truncated exon 11 were intracellularly retained, whereas SR-A variants with further truncations into exon 10 were surface-targeted. The fusion of exon 11 to the surface-targeted SR-A variant lacking the SRCR domain resulted in the intracellular retention and the co-immunoprecipitation of Bip chaperon of the endoplasmic reticulum. Surface-targeted variants were N-glycosylated, whereas intracellularly-retained variants retained in high-mannose states. In addition to the collagenous domain, the SRCR domain is a functional binding domain for oAβ and AcLDL. Our data suggest that inefficient folding of SR-AI variants with truncated SRCR domain was recognized by the endoplasmic reticulum associated degradation which leads to the immature N- glycosylation and intracellular retention.

Conclusion

The novel functions of the SRCR domain on regulating the efficacy of receptor trafficking and ligand binding may lead to possible approaches on modulating the innate immunity in Alzheimer’s disease and atherosclerosis.  相似文献   
27.
Reactive oxygen species (ROS) are known to be involved in the pathogenesis of traumatic brain injury (TBI). Previous studies have shown that the susceptibility of mice to TBI-induced formation of cortical lesion is determined by the expression levels of copper-zinc and manganese superoxide dismutase (CuZnSOD and MnSOD, respectively). However, the underlying biochemical mechanisms are not understood. In this study, we measured the efficiency of mitochondrial respiration in mouse brains with altered expression of these two enzymes. While controlled cortical impact injury (CCII) with a deformation depth of 2 mm caused a drastic decrease in NAD-linked bioenergetic capacity in brain mitochondria of wild-type mice, the functional decrease was not observed in brains of littermate transgenic mice overexpressing CuZnSOD or MnSOD. In addition, a 1 mm CCII greatly compromised brain mitochondrial function in mice deficient in CuZnSOD or MnSOD, but not wild-type mice. Inclusion of the calcium-chelating agent, EGTA, in the assay solution could completely prevent dysfunction of oxidative phosphorylation in all mitochondrial samples, suggesting that the observed impairment of mitochondrial function was a result of calcium overloading. In conclusion, our results imply that mitochondrial dysfunction induced by superoxide anion radical contributes to lesion formation in mouse brain following physical trauma.  相似文献   
28.
Lee CC  Kuo CJ  Hsu MF  Liang PH  Fang JM  Shie JJ  Wang AH 《FEBS letters》2007,581(28):5454-5458
Five active metal-conjugated inhibitors (PMA, TDT, EPDTC, JMF1586 and JMF1600) bound with the 3C-like protease of severe acute respiratory syndrome (SARS)-associated coronavirus were analyzed crystallographically. The complex structures reveal two major inhibition modes: Hg(2+)-PMA is coordinated to C(44), M(49) and Y(54) with a square planar geometry at the S3 pocket, whereas each Zn(2+) of the four zinc-inhibitors is tetrahedrally coordinated to the H(41)-C(145) catalytic dyad. For anti-SARS drug design, this Zn(2+)-centered coordination pattern would serve as a starting platform for inhibitor optimization.  相似文献   
29.
Although several cell-based reporter assays have been developed for screening of viral protease inhibitors, most of these assays have a significant limitation in that numerous false positives can be generated for the compounds that are interfering with reporter gene detection due to the cellular viability. To improve, we developed a mammalian cell-based assay based on the reverse two-hybrid system to monitor the proteolytic activity of human enterovirus 71 (EV71) 3C protease and to validate the cytotoxicity of compounds at the same time. In this system, the GAL4 DNA binding domain (M3) and transactivation domain (VP16) were fused, in-frame, with 3C or 3C(mut). The 3C(mut) was an inactivated protease with mutations at the predicted catalytic triad. The reporter plasmid contains a secreted alkaline phosphatase (SEAP) gene under the control of GAL4 activating sequences. We demonstrated that M3-3C-VP16 failed to turn on the expression of SEAP due to the separation of M3 and the VP16 domains by self-cleavage of 3C. In contrast, SEAP expression was induced by the M3-3C(mut)-VP16 fusion protein or the M3-3C-VP16 in cells treated with AG7088, a potent inhibitor of human rhinoviruses (HRVs) 3C protease. Potentially, this protease detection system should greatly facilitate anti-EV71 drug discovery through a high-throughput screening.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号