首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   3篇
  94篇
  2018年   1篇
  2015年   1篇
  2014年   6篇
  2013年   1篇
  2012年   6篇
  2011年   6篇
  2010年   4篇
  2009年   1篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2005年   7篇
  2004年   2篇
  2003年   4篇
  2002年   5篇
  2001年   7篇
  2000年   1篇
  1999年   4篇
  1994年   1篇
  1992年   5篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
31.
Divergent natural selection acting on ecological traits, which also affect mate choice, is a key element of ecological speciation theory, but has not previously been demonstrated at the molecular gene level to our knowledge. Here we demonstrate parallel evolution in two cichlid genera under strong divergent selection in a gene that affects both. Strong divergent natural selection fixed opsin proteins with different predicted light absorbance properties at opposite ends of an environmental gradient. By expressing them and measuring absorbance, we show that the reciprocal fixation adapts populations to divergent light environments. The divergent evolution of the visual system coincides with divergence in male breeding coloration, consistent with incipient ecological by-product speciation.  相似文献   
32.
A comparative study on the chromophore (retinal) binding sites of the opsin (R-photopsin) from chicken red-sensitive cone visual pigment (iodopsin) and that scotopsin) from bovine rod pigment (rhodopsin) was made by the aid of geometric isomers of retinal (all-trans, 13-cis, 11-cis, 9-cis, and 7-cis) and retinal analogues including fluorinated (14-F, 12-F, 10-F, and 8-F) and methylated (12-methyl) 11-cis-retinals. The stereoselectivity of R-photopsin for the retinal isomers and analogues was almost identical with that of scotopsin, indicating that the shapes of the chromophore binding sites of both opsins are similar, although the former appears to be somewhat more restricted than the latter. The rates of pigment formation from R-photopsin were considerably greater than those from scotopsin. In addition, all the iodopsin isomers and analogues were more susceptible to hydroxylamine than were the rhodopsin ones. These observations suggest that the retinal binding site of iodopsin is located near the protein surface. On the basis of the spectral properties of fluorinated analogues, a polar group in the chromophore binding site of iodopsin as well as rhodopsin was estimated to be located near the hydrogen atom at the C10 position of the retinylidene chromophore. A large difference in wavelength between the absorption maxima of iodopsin and rhodopsin was significantly reduced in the 9-cis and 7-cis pigments. On the assumption that the retinylidene chromophore is anchored rigidly at the alpha-carbon of the lysine residue and loosely at the cyclohexenyl ring, each of the two isomers would have the Schiff-base nitrogen at a position altered from that of the 11-cis pigments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
33.
Spectroscopic properties of chicken iodopsin were investigated in correlation with the concentration of chloride in digitonin extracts. When chloride in the extract was depleted by extensive dialysis, chloride-depleted iodopsin (absorption maximum, 512 nm) was formed. It was converted to chloride-bound iodopsin (absorption maximum, 562 nm) by the addition of chloride in the extract. There existed an equilibrium between two forms of iodopsin with a dissociation constant of 0.8 mM chloride. The chromophore-transfer reaction from iodopsin to scotopsin or B-photopsin, the protein moiety of chicken rhodopsin or chicken blue-sensitive cone pigment, respectively, in digitonin extract was also investigated in correlation with the concentrations of chloride, other monovalent and divalent anions, and detergent. The chromophore of chloride-depleted iodopsin was easily transferred to scotopsin in the extract, resulting in formation of rhodopsin. On the other hand, chloride-bound iodopsin was fairly stable even in the presence of scotopsin, indicating that the reaction is inhibited by binding of chloride to iodopsin. The chromophore-transfer reaction to B-photopsin was also observed from chloride-depleted iodopsin but not from chloride-bound iodopsin. The reaction was observable in the 10% digitonin extract as well as in the 2% digitonin extract. The reaction was also observed when 25 mM Na2SO4 was present in the mixture instead of NaCl, but was not when 67 mM NaNO3 was present. All these facts suggest that the chloride binding site of iodopsin does not accept a divalent anion such as SO4(2+), but does accept a monovalent anion such as Cl- or NO3-, which causes inhibition of the chromophore transfer.  相似文献   
34.
The spectral sensitivity of a lycaenid butterfly, Narathura japonica, was investigated by electroretinography using an integrating sphere that could illuminate the compound eye from almost all directions. Samples were collected from three locations. Butterflies from different locations showed a similar pattern; the first, second, and third peaks (or a shoulder) were located at about 380, 460, and 560 nm, respectively. Males clearly showed the highest sensitivity at the first peak point. In contrast, females showed a higher relative sensitivity than males at the second and third peak points in all samples, and showed broad spectral sensitivity. This male-specific UV-sensitivity is discussed in terms of ecological factors.  相似文献   
35.
Chemerin is a recently identified adipocytokine which plays a role on inflammation and adipocytes metabolism. However, its function in vasculature is largely unknown. We examined the effects of chemerin on vascular endothelial inflammatory states. Treatment of human umbilical vein endothelial cells with chemerin (300 ng/ml, 20 min) induced phosphorylation of Akt (Ser473) and endothelial nitric oxide (NO) synthase (eNOS) (Ser1177). Consistently, chemerin increased intracellular cyclic GMP content. Pretreatment with chemerin (1-300 ng/ml, 24 h) significantly inhibited phosphorylation of nuclear factor (NF)-κB p65 (Ser536) and p38 as well as vascular cell adhesion molecule (VCAM)-1 expression induced by tumor necrosis factor (TNF)-α (5 ng/ml, 20 min-6 h). Inhibitor of NF-κB or p38 significantly inhibited the TNF-α-induced VCAM-1 expression. Chemerin also inhibited TNF-α-induced VCAM-1 expression in rat isolated aorta. Moreover, chemerin significantly inhibited monocytes adhesion to TNF-α-stimulated endothelial cells. The inhibitory effect of chemerin on TNF-α-induced VCAM-1 was reversed by a NOS inhibitor. Conversely, an NO donor, sodium nitroprusside significantly inhibited TNF-α-induced VCAM-1. The present results for the first time demonstrate that chemerin plays anti-inflammatory roles by preventing TNF-α-induced VCAM-1 expression and monocytes adhesion in vascular endothelial cells. The effect is mediated via inhibiting activation of NF-κB and p38 through stimulation of Akt/eNOS signaling and NO production.  相似文献   
36.
Tsutsui K  Imai H  Shichida Y 《Biochemistry》2008,47(41):10829-10833
Protonation of the retinal Schiff base chromophore is responsible for the absorption of visible light and is stabilized by the counterion residue E113 in vertebrate visual pigments. However, this residue is also conserved in vertebrate UV-absorbing visual pigments (UV pigments) which have an unprotonated Schiff base chromophore. To elucidate the role played by this residue in the photoisomerization of the unprotonated chromophore in UV pigments, we measured the quantum yield of the E113Q mutant of the mouse UV cone pigment (mouse UV). The quantum yield of the mutant was much lower than that of the wild type, indicating that E113 is required for the efficient photoisomerization of the unprotonated chromophore in mouse UV. Introduction of the E113Q mutation into the chicken violet cone pigment (chicken violet), which has a protonated chromophore, caused deprotonation of the chromophore and a reduction in the quantum yield. On the other hand, the S90C mutation in chicken violet, which deprotonated the chromophore with E113 remaining intact, did not significantly affect the quantum yield. These results suggest that E113 facilitates photoisomerization in both UV-absorbing and visible light-absorbing visual pigments and provide a possible explanation for the complete conservation of E113 among vertebrate UV pigments.  相似文献   
37.
Photochemical and subsequent thermal reactions of rhodopsin containing 9-cis-retinal [Rh(9)] or one of four analogues with 9-cis geometries formed from ring-modified retinals, alpha-retinal [alpha Rh(9)], acyclic retinal [AcRh(9)], acyclic alpha-retinal [Ac alpha Rh(9)], and 5-isopropyl-alpha-retinal [P alpha Rh(9)] were investigated by low-temperature spectrophotometry and nanosecond laser photolysis. Irradiation of each pigment at -180 degrees C produced a photosteady-state mixture containing the original 9-cis pigment, its 11-cis pigment, and a photoproduct, indicating that the primary process of each pigment is a photoisomerization of its chromophore. The photoproduct produced by the irradiation of AcRh(9) had an absorption spectrum red shifted from the original AcRh(9) and was identified as the batho intermediate of AcRh(9). It was converted to the lumi intermediate through a metastable species, the BL intermediate, which has never been detected in Rh(9) at low temperature and whose absorption maximum was at shorter wavelengths than that of the batho intermediate. In contrast, the absorption maxima of the photoproducts produced from the other analogue pigments were at shorter wavelengths than those of the original pigments. They were identified as BL intermediates on the basis of their absorption maxima and thermal stabilities. The formation time constant of the lumi intermediate at room temperature was found to be dependent on the extent of modification of the ring portion of the chromophore, decreasing with the complete truncation of the cyclohexenyl ring [Ac alpha Rh(9)] and increasing with the attachment of the isopropyl group to the ring [P alpha Rh(9)].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
38.
Phoborhodopsin (pR) is the fourth retinal pigment of Halobacterium halobium and works as a photoreceptor for the negative phototactic response. A similar pigment was previously found in haloalkaliphilic bacterium (Natronbacterium pharaonis) and also works as the receptor of the negative phototactic response; this pigment is called pharaonis phoborhodopsin (ppR). In this paper, the photocycle of ppR was investigated by means of low-temperature spectrophotometry. The absorption maximum of ppR is located at 498 nm, while that of pR is at 487 nm. The absorption spectra of the two have similar vibrational structures. Irradiation of ppR below -100 degrees C produced a K-like intermediate (ppRK) which was a composite of two components. The original ppR and ppRK were perfectly photoreversible. On warming, ppRK was directly converted to an M-like intermediate without formation of the L-like intermediate. The M-like intermediate was converted to the O-like intermediate at pH 7.2, but the O-like intermediate was not detected at pH 9.0. The O-like intermediate then reverted to the original pigment. On the basis of these findings, the photocycle and the primary photochemical process of ppR are presented.  相似文献   
39.
The difference Fourier transform infrared spectrum for the N intermediate in the photoreaction of the light-adapted form of bacteriorhodopsin can be recorded at pH 10 at 274 K (Pfefferlé, J.-M., Maeda, A., Sasaki, J., and Yoshizawa, T. (1991) Biochemistry 30, 6548-6556). Under these conditions, Asp96-->Asn bacteriorhodopsin gives a photoproduct which shows changes in protein structure similar to those observed in N of wild-type bacteriorhodopsin. However, decreased intensity of the chromophore bands and the single absorbance maximum at about 400 nm indicate that the Schiff base is unprotonated, as in the M intermediate. This photoproduct was named MN. At pH 7, where the supply of proton is not as restricted as at pH 10, Asp96-->Asn bacteriorhodopsin yields N with a protonated Schiff base. The Asn96 residue, which cannot deprotonate as Asp96 in wild-type bacteriorhodopsin, is perturbed upon formation of both MN at pH 10 and N at pH 7. We suggest that the reprotonation of the Schiff base is preceded by a large change in the protein structure including perturbation of the residue at position 96.  相似文献   
40.
G proteins are posttranslationally modified by isoprenylation: either farnesylation or geranylgeranylation. The gamma subunit of retinal transducin (Talpha/Tbetagamma) is selectively farnesylated, and the farnesylation is required for light signaling mediated by transducin in rod cells. However, whether and how this selective isoprenylation regulates cellular functions remain poorly understood. Here we report that knockin mice expressing geranylgeranylated Tgamma showed normal rod responses to dim flashes under dark-adapted conditions but exhibited impaired properties in light adaptation. Of note, geranylgeranylation of Tgamma suppressed light-induced transition of Tbetagamma from membrane to cytosol, and also attenuated its light-dependent translocation from the outer segment to the inner region, an event contributing to retinal light adaptation. These results indicate that, while the farnesylation of transducin is interchangeable with the geranylgeranylation in terms of the light signaling, the selective farnesylation is important for visual sensitivity regulation by providing sufficient but not excessive membrane anchoring of Tbetagamma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号