首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16569篇
  免费   1250篇
  国内免费   1219篇
  19038篇
  2024年   42篇
  2023年   239篇
  2022年   573篇
  2021年   950篇
  2020年   573篇
  2019年   764篇
  2018年   759篇
  2017年   559篇
  2016年   787篇
  2015年   1039篇
  2014年   1297篇
  2013年   1419篇
  2012年   1511篇
  2011年   1369篇
  2010年   833篇
  2009年   745篇
  2008年   848篇
  2007年   705篇
  2006年   563篇
  2005年   504篇
  2004年   417篇
  2003年   363篇
  2002年   268篇
  2001年   250篇
  2000年   222篇
  1999年   231篇
  1998年   159篇
  1997年   137篇
  1996年   121篇
  1995年   110篇
  1994年   104篇
  1993年   87篇
  1992年   104篇
  1991年   101篇
  1990年   53篇
  1989年   55篇
  1988年   41篇
  1987年   32篇
  1986年   22篇
  1985年   27篇
  1984年   23篇
  1983年   15篇
  1982年   7篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The aim of the present study was to examine the effects of CUDC-101, a novel histone deacetylase inhibitor, on the in vitro development and expression of the epigenetic marker histone H3 at lysine 9 (AcH3K9) in pig SCNT embryos. We found that treatment with 1 μmol/L CUDC-101 for 24 hours significantly improved the development of pig SCNT embryos. Compared with the control group, the blastocyst rate was higher (18.5% vs. 10.3%; P < 0.05). To assess in vivo developmental potency, CUDC-101–treated SCNT embryos were transferred into two surrogate mothers, resulting in one pregnancy with six fetuses. We then investigated the acetylation level of histone H3K9 in SCNT embryos treated with CUDC-101 and compared them only against untreated embryos. The acetylation level of control SCNT embryos was lower than that of CUDC-101–treated embryos at pseudo-pronuclear stages, and immunofluorescent signal for H3K9ac in CUDC-101–treated embryos in a pattern similar to that of control group. In conclusion, we demonstrated that CUDC-101 can significantly improve in vitro and in vivo developmental competence and enhance the nuclear reprogramming of pig SCNT embryos.  相似文献   
992.
Load-bearing biological materials such as shell, mineralized tendon and bone exhibit two to seven levels of structural hierarchy based on constituent materials (biominerals and proteins) of relatively poor mechanical properties. A key question that remains unanswered is what determines the number of hierarchical levels in these materials. Here we develop a quasi-self-similar hierarchical model to show that, depending on the mineral content, there exists an optimal level of structural hierarchy for maximal toughness of biocomposites. The predicted optimal levels of hierarchy and cooperative deformation across multiple structural levels are in excellent agreement with experimental observations.  相似文献   
993.
Wang X  Gao Z  Xu X  Ruan L 《Journal of bacteriology》2011,193(19):5544-5545
Thermococcus sp. strain 4557 is a hyperthermophilic anaerobic archaeon isolated from the deep-sea hydrothermal vent Guaymas Basin site in the Gulf of California at a depth of 2,000 m. Here, we present the complete genome sequence of Thermococcus sp. 4557, which consists of a single circular chromosome of 2,011,320 bp with a G+C content of 56.08%.  相似文献   
994.
Red soils, which are widely distributed in tropical and subtropical regions of southern China, are characterized by low organic carbon, high content of iron oxides, and acidity and, hence, are likely to be ideal habitats for acidophilic actinomycetes. However, the diversity and biosynthetic potential of actinomycetes in such habitats are underexplored. Here, a total of 600 actinomycete strains were isolated from red soils collected in Jiangxi Province in southeast China. 16S rRNA gene sequence analysis revealed a high diversity of the isolates, which were distributed into 26 genera, 10 families, and 7 orders within the class Actinobacteria; these taxa contained at least 49 phylotypes that are likely to represent new species within 15 genera. The isolates showed good physiological potentials for biosynthesis and biocontrol. Chemical screening of 107 semirandomly selected isolates spanning 20 genera revealed the presence of at least 193 secondary metabolites from 52 isolates, of which 125 compounds from 39 isolates of 12 genera were putatively novel. Macrolides, polyethers, diketopiperazines, and siderophores accounted for most of the known compounds. The structures of six novel compounds were elucidated, two of which had a unique skeleton and represented characteristic secondary metabolites of a putative novel Streptomyces phylotype. These results demonstrate that red soils are rich reservoirs for diverse culturable actinomycetes, notably members of the families Streptomycetaceae, Pseudonocardiaceae, and Streptosporangiaceae, with the capacity to synthesize novel bioactive compounds.  相似文献   
995.
There is a close association between hyperglycemia and increased risk of mortality after acute myocardial infarction (AMI). However, whether acute hyperglycemia exacerbates myocardial ischemia/reperfusion (MI/R) injury remains unclear. We observed the effects of acute hyperglycemia on MI/R injury and on the cardioprotective effect of glucose-insulin-potassium (GIK). Male rats were subjected to 30 min of myocardial ischemia and 6 h of reperfusion. Rats were randomly received one of the following treatments (at 4 ml.kg(-1).h(-1) iv): Vehicle, GIK (GIK during reperfusion; glucose: 200g/l, insulin: 60 U/l, KCL: 60 mmol/l), HG (high glucose during ischemia; glucose:500 g/l), GIK + HG (HG during I and GIK during R) or GIK + wortmannin (GIK during R and wortmannin 15 min before R). Blood glucose, plasma insulin concentration and left ventricular pressure (LVP) were monitored throughout the experiments. Hyperglycemia during ischemia not only significantly increased myocardial apoptosis (23.6 +/- 1.7% vs. 18.8 +/- 1.4%, P < 0.05 vs. vehicle), increased infarct size (IS) (45.6 +/- 3.0% vs. 37.6 +/- 2.0%, P < 0.05 vs. vehicle), decreased Akt and GSK-3beta phosphorylations (0.5 +/- 0.2 and 0.6 +/- 0.1% fold of vehicle, respectively, P < 0.05 vs. vehicle) following MI/R, but almost completely blocked the cardioprotective effect afforded by GIK, as evidenced by significantly increased apoptotic index (19.1 +/- 2.0 vs. 10.3 +/- 1.2%, P < 0.01 vs. GIK), increased myocardial IS (39.2 +/- 2.8 vs. 27.2 +/- 2.1%, P < 0.01 vs. GIK), decreased Akt phosphorylation (1.1 +/- 0.1 vs. 1.7 +/- 0.2%, P < 0.01 vs. GIK) and GSK-3beta phosphorylation (1.4 +/- 0.2 vs. 2.3 +/- 0.2%, P < 0.05 vs. GIK). Hyperglycemia significantly exacerbates MI/R injury and blocks the cardioprotective effect afforded by GIK, which is, at least in part, due to hyperglycemia-induced decrease of myocardial Akt activation.  相似文献   
996.
997.
Interleukin-17 (IL-17) is critically involved in the pathogenesis of various inflammatory disorders. IL-17 receptor (IL-17R)-proximal signaling complex (IL-17R-Act1-TRAF6) is essential for IL-17-mediated NF-κB activation, while IL-17-mediated mRNA stability is TRAF6 independent. Recently, inducible IκB kinase (IKKi) has been shown to phosphorylate Act1 on Ser 311 to mediate IL-17-induced mRNA stability. Here we show that TANK binding kinase 1 (TBK1), the other IKK-related kinase, directly phosphorylated Act1 on three other Ser sites to suppress IL-17R-mediated NF-κB activation. IL-17 stimulation activated TBK1 and induced its association with Act1. IKKi also phosphorylated Act1 on the three serine sites and played a redundant role with TBK1 in suppressing IL-17-induced NF-κB activation. Act1 phosphorylation on the three sites inhibited its association with TRAF6 and consequently NF-κB activation in IL-17R signaling. Interestingly, TRAF6, but not TRAF3, which is the upstream adaptor of the IKK-related kinases in antiviral signaling, was critical for IL-17-induced Act1 phosphorylation. TRAF6 was essential for IL-17-induced TBK1 activation, its association with Act1, and consequent Act1 phosphorylation. Our findings define a new role for the IKK-related kinases in suppressing IL-17-mediated NF-κB activation through TRAF6-dependent Act1 phosphorylation.  相似文献   
998.
Inflammation has been demonstrated to be the key factor for intervertebral disc degeneration (IVD), which remains a major public health problem. Isofraxidin is a coumarin compound that possesses strong anti-inflammatory activity. However, the role of isofraxidin in IVD remains unclear. The aim of this study was to evaluate the effects of isofraxidin on inflammatory response in human nucleus pulposus cells (NPCs) exposed to interleukin-1β (IL-1β). The results proved that isofraxidin attenuated the IL-1β-induced significant increases in inflammatory mediators and cytokines including nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α), and IL-6. Besides, isofraxidin also inhibited the induction effect of IL-1β on matrix metalloproteinases (MMP)-3 and MMP-13. Moreover, the NF-κB activation caused by IL-1β was significantly inhibited by isofraxidin treatment. These findings suggested that isofraxidin alleviates IL-1β-induced inflammation in NPCs. Our work provided an idea that isofraxidin might act as a novel preventive role in IVD.  相似文献   
999.
1000.
Tetrahydrobiopterin (BH4) is an essential cofactor for aromatic acid hydroxylases, which control the levels of monoamine neurotransmitters. BH4 deficiency has been associated with many neuropsychological disorders. Dihydrofolate reductase (DHFR) can catalyze 7,8-dihydrobiopterin to 5,6,7,8-tetrahydrobiopterin (BH4) in the salvage pathway of BH4 synthesis from sepiapterin (SP), a major pigment component contained in the integument of silkworm Bombyx mori mutant lemon (lem) in high concentration. In this study, we report the cloning of DHFR gene from the silkworm B. mori (BmDhfr) and identification of enzymatic properties of BmDHFR. BmDhfr is located on scaffold Bm_199 with a predicted gene model BGIBMGA013340, which encodes a 185-aa polypeptide with a predicted molecular mass of about 21?kDa. Biochemical analyses showed that the recombinant BmDHFR protein exhibited high enzymatic activity and suitable parameters to substrate. Together with our previous studies on SP reductase of B. mori (BmSPR) and the lem mutant, it may be an effective way to industrially extract SP from the lem silkworms in large scale to produce BH4 in vitro by co-expressing BmSPR and BmDHFR and using the extracted SP as a substrate in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号