首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149923篇
  免费   23062篇
  国内免费   8732篇
  181717篇
  2024年   274篇
  2023年   1558篇
  2022年   3732篇
  2021年   6521篇
  2020年   5795篇
  2019年   8244篇
  2018年   8424篇
  2017年   7635篇
  2016年   9100篇
  2015年   10858篇
  2014年   12067篇
  2013年   13281篇
  2012年   12782篇
  2011年   11423篇
  2010年   9277篇
  2009年   7417篇
  2008年   7205篇
  2007年   6163篇
  2006年   5455篇
  2005年   4585篇
  2004年   4024篇
  2003年   3539篇
  2002年   3088篇
  2001年   2720篇
  2000年   2418篇
  1999年   2028篇
  1998年   1165篇
  1997年   1068篇
  1996年   1065篇
  1995年   1024篇
  1994年   928篇
  1993年   674篇
  1992年   928篇
  1991年   738篇
  1990年   663篇
  1989年   520篇
  1988年   416篇
  1987年   428篇
  1986年   341篇
  1985年   332篇
  1984年   228篇
  1983年   212篇
  1982年   160篇
  1981年   136篇
  1980年   90篇
  1979年   123篇
  1978年   93篇
  1974年   82篇
  1973年   97篇
  1972年   82篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
971.
Growing evidence suggests that there are many common cell biological features shared by neurons and podocytes; however, the mechanism of podocyte foot process formation remains unclear. Comparing the mechanisms of process formation between two cell types should provide useful guidance from the progress of neuron research. Studies have shown that some mature proteins of podocytes, such as podocin, nephrin, and synaptopodin, were also expressed in neurons. In this study, using cell biological experiments and immunohistochemical techniques, we showed that some neuronal iconic molecules, such as Neuron-specific enolase, nestin and Neuron-specific nuclear protein, were also expressed in podocytes. We further inhibited the expression of Neuron-specific enolase, nestin, synaptopodin and Ubiquitin carboxy terminal hydrolase-1 by Small interfering RNA in cultured mouse podocytes and observed the significant morphological changes in treated podocytes. When podocytes were treated with Adriamycin, the protein expression of Neuron-specific enolase, nestin, synaptopodin and Ubiquitin carboxy terminal hydrolase-1 decreased over time. Meanwhile, the morphological changes in the podocytes were consistent with results of the Small interfering RNA treatment of these proteins. The data demonstrated that neuronal iconic proteins play important roles in maintaining and regulating the formation and function of podocyte processes.  相似文献   
972.
973.
974.
975.
The macro- and microrelief of the surface of the digestive tract mucosa of two pika species—Pallas’s (Ochotona pallasi) and Daurian (O. dauurica)—were studied in detail using whole-mount preparations and scanning electron microscopy. The structural features of the intestinal mucosal surface specific of mammals, such as the formation of projections on the crest of the cecal spiral fold and microcells in the colonic ampulla, were studied. It was found that the colonic mucosa forms sparse large conical villi in pocket cavities and on the surface of muscle bands. Significant differences in the cecal mucosal relief were found between the species studied. The possible functional significance of the identified morphological features is discussed.  相似文献   
976.
Production of reactive oxygen species (ROS) by macrophages derived from blood monocytes of healthy donors (MPN) and patients with ischemic heart disease (IHD) (MPIHD) before, during, and after their incubation with low-density lipoprotein (LDL) isolated from blood plasma of healthy donors (LDLN) and patients with a high cholesterol level (LDLH) was investigated by the method of luminol-dependent (spontaneous) and stimulated chemiluminescence (CL) using opsonized zymosan (OZ) or phorbol-12-myristate-13-acetate (PMA) as the CL stimulators. It was shown that proper, luminol-dependent, and zymosan-or PMA-stimulated chemiluminescence of MPIHD was 1.4-, 1.8-, 2.7-, and 1.6-fold higher than the same types of chemiluminescence of MPN, respectively, (p<0.05–0.01). Although the effect of OZ on MPN and MPIHD was more potent than that of PMA (by 4.3- and 3.2-fold, respectively), but it appeared in 2.5–3.0 times slower than that of PMA. LDLN and LDLH incubated with MPN for the first 15 and 60 min caused the 1.4- and 2.5-increase of the luminol-dependent CL of MPN; the same treatment of MPIHD did not influence ROS production by these cells. Repeated increase in the OZ-stimulated CL of MPN was also observed after preincubation for 15–180 min with LDLN and LDLH followed by LDL removal, subsequent MPN washing and addition of Hanks solution and OZ; the repeated increase in OZ-stimulated CL of MPN was only observed after incubation with LDLH than with LDLN. No increase of CL was observed in experiments with MPIHD. Thus, more intensive chemiluminescence of macrophages obtained from blood of patients with IHD suggests their in vivo stimulation. LDLN and LDLH may cause both primary and secondary (after preincubation) stimulating effect on CL of MPN but not of MPIHD. Thus, the analysis of macrophage chemiluminescence is a sensitive test for evaluation the degree of macrophage stimulation; it may be effectively used for monitoring of effectiveness of medical treatment of patients.  相似文献   
977.
Mycosin-1 protease (MycP1) is a serine protease anchored to the inner membrane of Mycobacterium tuberculosis, and is essential in virulence factor secretion through the ESX-1 type VII secretion system (T7SS). Bacterial physiology studies demonstrated that MycP1 plays a dual role in the regulation of ESX-1 secretion and virulence, primarily through cleavage of its secretion substrate EspB. MycP1 contains a putative N-terminal inhibitory propeptide and a catalytic triad of Asp-His-Ser, classic hallmarks of a subtilase family serine protease. The MycP1 propeptide was previously reported to be initially inactive and activated after prolonged incubation. In this study, we have determined crystal structures of MycP1 with (MycP124-422) and without (MycP163-422) the propeptide, and conducted EspB cleavage assays using the two proteins. Very high structural similarity was observed in the two crystal structures. Interestingly, protease assays demonstrated positive EspB cleavage for both proteins, indicating that the putative propeptide does not inhibit protease activity. Molecular dynamic simulations showed higher rigidity in regions guarding the entrance to the catalytic site in MycP124-422 than in MycP163-422, suggesting that the putative propeptide might contribute to the conformational stability of the active site cleft and surrounding regions.  相似文献   
978.
979.
Malonyl‐CoA decarboxylase (MCD) can control the level of malonyl‐CoA in cell through the decarboxylation of malonyl‐CoA to acetyl‐CoA, and plays an essential role in regulating fatty acid metabolism, thus it is a potential target for drug discovery. However, the interactions of MCD with CoA derivatives are not well understood owing to unavailable crystal structure with a complete occupancy in the active site. To identify the active site of MCD, molecular docking and molecular dynamics simulations were performed to explore the interactions of human mitochondrial MCD (HmMCD) and CoA derivatives. The findings reveal that the active site of HmMCD indeed resides in the prominent groove which resembles that of CurA. However, the binding modes are slightly different from the one observed in CurA due to the occupancy of the side chain of Lys183 from the N‐terminal helical domain instead of the adenine ring of CoA. The residues 300 ? 305 play an essential role in maintaining the stability of complex mainly through hydrogen bond interactions with the pyrophosphate moiety of acetyl‐CoA. Principle component analysis elucidates the conformational distribution and dominant concerted motions of HmMCD. MM_PBSA calculations present the crucial residues and the major driving force responsible for the binding of acetyl‐CoA. These results provide useful information for understanding the interactions of HmMCD with CoA derivatives. Proteins 2016; 84:792–802. © 2016 Wiley Periodicals, Inc.  相似文献   
980.
Initial functional studies have demonstrated that RNA‐binding motif protein 10 (RBM10) can promote apoptosis and suppress cell proliferation; however, the results of several studies suggest a tumour‐promoting role for RBM10. Herein, we assessed the involvement of RBM10 in lung adenocarcinoma cell proliferation and explored the potential molecular mechanism. We found that, both in vitro and in vivo, RBM10 overexpression suppresses lung adenocarcinoma cell proliferation, while its knockdown enhances cell proliferation. Using complementary DNA microarray analysis, we previously found that RBM10 overexpression induces significant down‐regulation of RAP1A expression. In this study, we have confirmed that RBM10 decreases the activation of RAP1 and found that EPAC stimulation and inhibition can abolish the effects of RBM10 knockdown and overexpression, respectively, and regulate cell growth. This effect of RBM10 on proliferation was independent of the MAPK/ERK and P38/MAPK signalling pathways. We found that RBM10 reduces the phosphorylation of CREB via the AKT signalling pathway, suggesting that RBM10 exhibits its effect on lung adenocarcinoma cell proliferation via the RAP1/AKT/CREB signalling pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号