全文获取类型
收费全文 | 149934篇 |
免费 | 23048篇 |
国内免费 | 8736篇 |
专业分类
181718篇 |
出版年
2024年 | 274篇 |
2023年 | 1558篇 |
2022年 | 3732篇 |
2021年 | 6521篇 |
2020年 | 5795篇 |
2019年 | 8244篇 |
2018年 | 8424篇 |
2017年 | 7635篇 |
2016年 | 9100篇 |
2015年 | 10858篇 |
2014年 | 12067篇 |
2013年 | 13281篇 |
2012年 | 12782篇 |
2011年 | 11423篇 |
2010年 | 9277篇 |
2009年 | 7417篇 |
2008年 | 7205篇 |
2007年 | 6163篇 |
2006年 | 5456篇 |
2005年 | 4586篇 |
2004年 | 4024篇 |
2003年 | 3539篇 |
2002年 | 3088篇 |
2001年 | 2720篇 |
2000年 | 2418篇 |
1999年 | 2028篇 |
1998年 | 1164篇 |
1997年 | 1068篇 |
1996年 | 1065篇 |
1995年 | 1024篇 |
1994年 | 928篇 |
1993年 | 674篇 |
1992年 | 928篇 |
1991年 | 738篇 |
1990年 | 663篇 |
1989年 | 520篇 |
1988年 | 416篇 |
1987年 | 428篇 |
1986年 | 341篇 |
1985年 | 332篇 |
1984年 | 228篇 |
1983年 | 212篇 |
1982年 | 160篇 |
1981年 | 136篇 |
1980年 | 90篇 |
1979年 | 123篇 |
1978年 | 93篇 |
1974年 | 82篇 |
1973年 | 97篇 |
1972年 | 82篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
881.
The Notch signaling pathway plays a critical role during mammalian development. To bypass embryonic lethality associated with constitutive Notch1 signaling, we created transgenic mice with a floxed beta-geo/stop signal between a cytomegalo virus promoter and the constitutively active intracellular domain of Notch1 (IC-Notch1). IC-Notch1 is activated upon introduction of Cre recombinase and it is coexpressed with an enhanced green fluorescent protein or human placental alkaline phosphatase reporter. We created three IC-Notch1 transgenic mouse lines and crossed them to a general Cre deletor mouse line, pCX-Cre. The double transgenic IC-Notch1/pCX-Cre embryos have widespread expression of IC-Notch1 and reporters and die before 10.5 days of gestation. Morphological and histological analysis of the double transgenic embryos indicated growth arrest and various developmental defects, including lack of neural tube closure, disorganized somites, and disrupted vasculature. The conditional IC-Notch1 expressing transgenic mice provide a unique tool to investigate the Notch pathway using tissue-specific Cre mice and inducible Cre systems. 相似文献
882.
Salmonella enterica serotype Choleraesuis (S. Choleraesuis) usually causes systemic infections in man and needs antimicrobial treatment. Multidrug resistance (MDR) in S. Choleraesuis is thus a great concern in the treatment of systemic non-typhoid salmonellosis. A large plasmid, pSC138, was identified in 2002 from a S. Choleraesuis strain SC-B67 that was resistant to all antimicrobial agents commonly used to treat salmonellosis, including ciprofloxacin and ceftriaxone. Complete DNA sequence of the plasmid had been determined previously (Chiu et al., 2005). In the present study, the sequence of pSC138 was reannotated in detail and compared with several newly sequenced plasmids. Some transposable elements and drug resistance genes were further delineated. Plasmid pSC138 was 138,742 bp in length and consisted of 177 open reading frames (ORFs). While 134 of the ORFs displayed significant identity levels to other plasmid and prokaryotic sequences, the remaining 43 ORFs have not been previously reported. Mobile elements, including two integrons, seven insertion sequences and eight transposons, and a truncated prophage together encompass at least 66,781 bp (48.1%) of the plasmid genome. The sequence of pSC138 consists of three major regions: a large composite transposable region Tn6088 with a Tn21-like backbone inserted by a variety of integrons or transposable elements; a transfer/maintenance region that contains a conserved ISEcp1-mediated transposon-like element Tn6092, carrying an AmpC gene, bla(CMY-2), that confers the ceftriaxone resistance; and a Rep_3 type of replication region. Another seven bacteremic strains of S. Choleraesuis that expressed the same MDR phenotype were identified during 2003-2008. The same Rep_3 type replicase and the bla(CMY-2)-containing, ISEcp1-mediated transposon-like element were found in the MDR isolates, suggesting a successful preservation and dissemination of the MDR plasmid. Comparison of pSC138 with other recently published plasmids revealed a high identity level between partial sequences of pSC138 and plasmids of the same or different incompatibility groups. The large MDR region found in pSC138 may provide a niche for the future evolution of the plasmid by acquisition of relevant resistance genes through the panoply of mobile elements and illegitimate recombination events. 相似文献
883.
Scott Bennett Thomas Wernberg Thibaut de Bettignies Gary A. Kendrick Robert J. Anderson John J. Bolton Kirsten L. Rodgers Nick T. Shears Jean‐Charles Leclerc Laurent Lévêque Dominique Davoult Hartvig C. Christie 《Ecology letters》2015,18(7):677-686
Species interactions are integral drivers of community structure and can change from competitive to facilitative with increasing environmental stress. In subtidal marine ecosystems, however, interactions along physical stress gradients have seldom been tested. We observed seaweed canopy interactions across depth and latitudinal gradients to test whether light and temperature stress structured interaction patterns. We also quantified interspecific and intraspecific interactions among nine subtidal canopy seaweed species across three continents to examine the general nature of interactions in subtidal systems under low consumer pressure. We reveal that positive and neutral interactions are widespread throughout global seaweed communities and the nature of interactions can change from competitive to facilitative with increasing light stress in shallow marine systems. These findings provide support for the stress gradient hypothesis within subtidal seaweed communities and highlight the importance of canopy interactions for the maintenance of subtidal marine habitats experiencing environmental stress. 相似文献
884.
Zoe Riches Yuejian Liu Jacob M. Berman Gurinder Walia Abby C. Collier 《Journal of biochemical and molecular toxicology》2017,31(8)
Dihydronicotinamide riboside:quinone oxidoreductase (NQO2) is an enzyme that performs reduction reactions involved in antioxidant defense. We hypothesized that NQO2 hepatic drug clearance would develop in children over time, similar to NQO1. Using human liver cytosol (n = 117), the effects of age, sex, ethnicity, and weight on NQO2 expression and activity were probed. No significant correlations were observed. Biochemical activity of NQO2 was as high at birth as in adults (0.23 ± 0.04 nmol/min/mg protein, mean ± SEM, range 0–1.83). In contrast, modeled hepatic clearance through the NQO2 pathway was up to 10% of adult levels at birth, reaching predicted adult levels (0.3 ± 0.03 L/h) at 14 years of age. Comparisons between NQO1 and NQO2 in the same livers showed that neither protein (P = 0.32) nor activity (P = 0.23) correlated, confirming both orthologs are independently regulated. Because hepatic clearance through NQO2 does not mature until teenage years, compounds detoxified by this enzyme may be more deleterious in children. 相似文献
885.
Tianjiao Lyu Nan Jia Jieyu Wang Xiaohui Yan Yinhua Yu Zhen Lu Robert C Bast Jr Keqin Hua Weiwei Feng 《Epigenetics》2013,8(12):1330-1346
The initiation of angiogenesis can mark the transition from tumor dormancy to active growth and recurrence. Mechanisms that regulate recurrence in human cancers are poorly understood, in part because of the absence of relevant models. The induction of ARHI (DIRAS3) induces dormancy and autophagy in human ovarian cancer xenografts but produces autophagic cell death in culture. The addition of VEGF to cultures maintains the viability of dormant autophagic cancer cells, thereby permitting active growth when ARHI is downregulated, which mimics the “recurrence” of growth in xenografts. Two inducible ovarian cancer cell lines, SKOv3-ARHI and Hey-ARHI, were used. The expression level of angiogenesis factors was evaluated by real-time PCR, immunohistochemistry, immunocytochemistry and western blot; their epigenetic regulation was measured by bisulfite sequencing and chromatin immunoprecipitation. Six of the 15 angiogenesis factors were upregulated in dormant cancer cells (tissue inhibitor of metalloproteinases-3, TIMP3; thrombospondin-1, TSP1; angiopoietin-1; angiopoietin-2; angiopoietin-4; E-cadherin, CDH1). We found that TIMP3 and CDH1 expression was regulated epigenetically and was related inversely to the DNA methylation of their promoters in cell cultures and in xenografts. Increased H3K9 acetylation was associated with higher TIMP3 expression in dormant SKOv3-ARHI cells, while decreased H3K27me3 resulted in the upregulation of TIMP3 in dormant Hey-ARHI cells. Elevated CDH1 expression during dormancy was associated with an increase in both H3K4me3 and H3K9Ac in two cell lines. CpG demethylating agents and/or histone deacetylase inhibitors inhibited the re-growth of dormant cancer cells, which was associated with the re-expression of anti-angiogenic genes. The expression of the anti-angiogenic genes TIMP3 and CDH1 is elevated during dormancy and is reduced during the transition to active growth by changes in DNA methylation and histone modification. 相似文献
886.
887.
T. V. Ivanova O. V. Maiorova Yu. V. Orlova E. I. Kuznetsova L. A. Khalilova N. A. Myasoedov Yu. V. Balnokin V. D. Tsydendambaev 《Russian Journal of Plant Physiology》2016,63(6):763-775
White goosefoot plants (Chenopodium album L. of the family Chenopodiaceae) grown at various NaCl concentrations (3–350 mM) in the nutrient solution were used to study the cell ultrastructure as well as the qualitative and quantitative composition of fatty acids in the lipids of vegetative organs. In addition, the biomass of Ch. album vegetative organs, the water content, and the concentrations of K+, Na+, and Cl– were determined. The growth rates of plants raised at NaCl concentrations up to 200–250 mM were the same as for the control plants grown at 3 mM NaCl; the growth parameters remained rather high even at NaCl concentrations of 300–350 mM. The water content in Ch. album organs remained high at all NaCl concentrations tested. Analysis of the ionic status of Ch. album revealed a comparatively high K+ content in plant organs. At low NaCl concentrations in the nutrient solution, K+ ions were the dominant contributors to the osmolarity (the total concentration of osmotically active substances) and, consequently, to the lowered cell water potential in leaves and roots. As the concentration of NaCl was increased, the plant organs accumulated larger amounts of Na+ and Cl–, and the contribution of these ion species to osmolarity became increasingly noticeable. At 300–350 mM NaCl the contribution of Na+ and Cl– to osmolarity was comparable to that of K+. An electron microscopy study of Ch. album cells revealed that, apart from the usual response to salinity manifested in typical ultrastructural changes of chloroplasts, mitochondria, and the cytosol, the salinity response comprised the enhanced formation of endocytic structures and exosomes and stimulation of autophagy. It is supposed that activation of these processes is related to the removal from the cytoplasm of toxic substances and the cell structures impaired by salt stress conditions. The qualitative and quantitative composition of fatty acids in the lipids of Ch. album organs was hardly affected by NaCl level. These findings are consistent with the high salt tolerance of Ch. album, manifested specifically in retention of growth functions under wide-range variations of NaCl concentration in the nutrient solution and in maintenance of K+, Na+, and Cl– content in organs at a constant level characteristic of untreated plants. 相似文献
888.
The histone deacetylase inhibitor trichostatin A alters the pattern of DNA replication origin activity in human cells 总被引:5,自引:1,他引:5
Eukaryotic chromatin structure limits the initiation of DNA replication spatially to chromosomal origin zones and temporally to the ordered firing of origins during S phase. Here, we show that the level of histone H4 acetylation correlates with the frequency of replication initiation as measured by the abundance of short nascent DNA strands within the human c-myc and lamin B2 origins, but less well with the frequency of initiation across the β-globin locus. Treatment of HeLa cells with trichostatin A (TSA) reversibly increased the acetylation level of histone H4 globally and at these initiation sites. At all three origins, TSA treatment transiently promoted a more dispersive pattern of initiations, decreasing the abundance of nascent DNA at previously preferred initiation sites while increasing the nascent strand abundance at lower frequency genomic initiation sites. When cells arrested in late G1 were released into TSA, they completed S phase more rapidly than untreated cells, possibly due to the earlier initiation from late-firing origins, as exemplified by the β-globin origin. Thus, TSA may modulate replication origin activity through its effects on chromatin structure, by changing the selection of initiation sites, and by advancing the time at which DNA synthesis can begin at some initiation sites. 相似文献
889.
Ho Cheng Koc Jing Xiao Weiwei Liu Yong Li Guokai Chen 《International journal of biological sciences》2022,18(12):4768
The pandemic of COVID-19 is the biggest public health crisis in 21st Century. Besides the acute symptoms after infection, patients and society are also being challenged by the long-term health complications associated with COVID-19, commonly known as long COVID. While health professionals work hard to find proper treatments, large amount of knowledge has been accumulated in recent years. In order to deal with long COVID efficiently, it is important for people to keep up with current progresses and take proactive actions on long COVID. For this purpose, this review will first introduce the general background of long COVID, and then discuss its risk factors, diagnostic indicators and management strategies. This review will serve as a useful resource for people to understand and prepare for long COVID that will be with us in the foreseeable future. 相似文献
890.
The Common Pheasant Phasianus colchicus is widely distributed in temperate to subtropical regions of the Palaearctic realm. Populations of Common Pheasant have been classified into five subspecies groups based on morphological variations in male plumage. Previous phylogeographical studies have focused on limited sets of subspecies groups in the eastern Palaearctic and knowledge on subspecies in the western Palaearctic region is still poor. In this study, we undertake the first comprehensive analysis of subspecies from all five defined subspecies groups across the entire Palaearctic region. Two mitochondrial (CYTB and CR) and two nuclear (HMG and SPI) loci were used to investigate genetic relationships of these subspecies groups and to infer their dispersal routes. Our results revealed that the subspecies elegans, with its range in northwestern Yunnan, China, was in the basal position among 17 studied subspecies, supporting a previous hypothesis that the Common Pheasant most probably originated in forests in southeastern China. Subspecies in the western Palaearctic region nested within the most subspecies‐rich torquatus group (‘Grey‐rumped Pheasants’), indicating that the torquatus group is not a clade but instead forms a gradation with other subspecies and subspecies groups. Our dating analysis suggested that the initial divergence among populations of Common Pheasant originated around 3.4 Mya with subsequent dispersal into the Western Palaearctic region during the Late Pliocene–Lower Pleistocene approximately 2.5–1.8 Mya. We propose two possible east‐to‐west colonization routes for the Common Pheasant and suggest conservation implications for some regional subspecies. Overall, this study demonstrates the lack of concordance between morphology‐based subspecies delimitation and their genetic relationships. This is likely to be a consequence of initial isolation due to historical vicariance followed by population admixture due to recent range expansion of Common Pheasant in the western Palaearctic region. 相似文献