首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65671篇
  免费   18120篇
  国内免费   3525篇
  2024年   77篇
  2023年   547篇
  2022年   1358篇
  2021年   2625篇
  2020年   3500篇
  2019年   5396篇
  2018年   5396篇
  2017年   5232篇
  2016年   5718篇
  2015年   6392篇
  2014年   6533篇
  2013年   7143篇
  2012年   5498篇
  2011年   4798篇
  2010年   4973篇
  2009年   3550篇
  2008年   2733篇
  2007年   1998篇
  2006年   1885篇
  2005年   1573篇
  2004年   1390篇
  2003年   1189篇
  2002年   1093篇
  2001年   1020篇
  2000年   862篇
  1999年   781篇
  1998年   447篇
  1997年   416篇
  1996年   396篇
  1995年   379篇
  1994年   339篇
  1993年   251篇
  1992年   318篇
  1991年   246篇
  1990年   241篇
  1989年   178篇
  1988年   169篇
  1987年   133篇
  1986年   108篇
  1985年   99篇
  1984年   72篇
  1983年   64篇
  1982年   34篇
  1981年   22篇
  1980年   17篇
  1979年   13篇
  1978年   10篇
  1976年   9篇
  1969年   9篇
  1965年   16篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
991.
The aged systemic milieu promotes cellular and cognitive impairments in the hippocampus. Here, we report that aging of the hematopoietic system directly contributes to the pro‐aging effects of old blood on cognition. Using a heterochronic hematopoietic stem cell (HSC) transplantation model (in which the blood of young mice is reconstituted with old HSCs), we find that exposure to an old hematopoietic system inhibits hippocampal neurogenesis, decreases synaptic marker expression, and impairs cognition. We identify a number of factors elevated in the blood of young mice reconstituted with old HSCs, of which cyclophilin A (CyPA) acts as a pro‐aging factor. Increased systemic levels of CyPA impair cognition in young mice, while inhibition of CyPA in aged mice improves cognition. Together, these data identify age‐related changes in the hematopoietic system as drivers of hippocampal aging.  相似文献   
992.
993.
Bacillus subtilis endospore‐mediated forsterite dissolution experiments were performed to assess the effects of cell surface reactivity on Mg isotope fractionation during chemical weathering. Endospores present a unique opportunity to study the isolated impact of cell surface reactivity because they exhibit extremely low metabolic activity. In abiotic control assays, 24Mg was preferentially released into solution during forsterite dissolution, producing an isotopically light liquid phase (δ26Mg = ?0.39 ± 0.06 to ?0.26 ± 0.09‰) relative to the initial mineral composition (δ26Mg = ?0.24 ± 0.03‰). The presence of endospores did not have an apparent effect on Mg isotope fractionation associated with the release of Mg from the solid into the aqueous phase. However, the endospore surfaces preferentially adsorbed 24Mg from the dissolution products, which resulted in relatively heavy aqueous Mg isotope compositions. These aqueous Mg isotope compositions increased proportional to the fraction of dissolved Mg that was adsorbed, with the highest measured δ26Mg (?0.08 ± 0.07‰) corresponding to the highest degree of adsorption (~76%). The Mg isotope composition of the adsorbed fraction was correspondingly light, at an average δ26Mg of ?0.49‰. Secondary mineral precipitation and Mg adsorption onto secondary minerals had a minimal effect on Mg isotopes at these experimental conditions. Results demonstrate the isolated effects of cell surface reactivity on Mg isotope fractionation separate from other common biological processes, such as metabolism and organic acid production. With further study, Mg isotopes could be used to elucidate the role of the biosphere on Mg cycling in the environment.  相似文献   
994.
Adequate support of energy for biological activities and during fluctuation of energetic demand is crucial for healthy aging; however, mechanisms for energy decline as well as compensatory mechanisms that counteract such decline remain unclear. We conducted a discovery proteomic study of skeletal muscle in 57 healthy adults (22 women and 35 men; aged 23–87 years) to identify proteins overrepresented and underrepresented with better muscle oxidative capacity, a robust measure of in vivo mitochondrial function, independent of age, sex, and physical activity. Muscle oxidative capacity was assessed by 31P magnetic resonance spectroscopy postexercise phosphocreatine (PCr) recovery time (τPCr) in the vastus lateralis muscle, with smaller τPCr values reflecting better oxidative capacity. Of the 4,300 proteins quantified by LC‐MS in muscle biopsies, 253 were significantly overrepresented with better muscle oxidative capacity. Enrichment analysis revealed three major protein clusters: (a) proteins involved in key energetic mitochondrial functions especially complex I of the electron transport chain, tricarboxylic acid (TCA) cycle, fatty acid oxidation, and mitochondrial ABC transporters; (b) spliceosome proteins that regulate mRNA alternative splicing machinery, and (c) proteins involved in translation within mitochondria. Our findings suggest that alternative splicing and mechanisms that modulate mitochondrial protein synthesis are central features of the molecular mechanisms aimed at maintaining mitochondrial function in the face of impairment. Whether these mechanisms are compensatory attempt to counteract the effect of aging on mitochondrial function should be further tested in longitudinal studies.  相似文献   
995.
Alzheimer's disease (AD) and cancer have inverse relationship in many aspects. Some tumor suppressors, including miR‐34c, are decreased in cancer but increased in AD. The upstream regulatory pathways and the downstream mechanisms of miR‐34c in AD remain to be investigated. The expression of miR‐34c was detected by RT–qPCR in oxidative stressed neurons, hippocampus of SAMP8 mice, or serum of patients with amnestic mild cognitive impairment (aMCI). Dual luciferase assay was performed to confirm the binding sites of miR‐34c in its target mRNA. The Morris water maze (MWM) was used to evaluate learning and memory in SAMP8 mice administrated with miR‐34c antagomir (AM34c). Golgi staining was used to evaluate the synaptic function and structure. The dramatically increased miR‐34c was mediated by ROS‐JNK‐p53 pathway and negatively regulated synaptotagmin 1 (SYT1) expression by targeting the 3′‐untranslated region (3′‐UTR) of syt1 in AD. The expression of SYT1 protein was reduced by over expression of miR‐34c in the HT‐22 cells and vice versa. Administration of AM34c by the third ventricle injection or intranasal delivery markedly increased the brain levels of SYT1 and ameliorated the cognitive function in SAMP8 mice. The serum miR‐34c was significantly increased in patients with aMCI and might be a predictive biomarker for diagnosis of aMCI. These results indicated that increased miR‐34c mediated synaptic and memory deficits by targeting SYT1 through ROS‐JNK‐p53 pathway and the miR‐34c/SYT1 pathway could be considered as a promising novel therapeutic target for patients with AD.  相似文献   
996.
Alzheimer's disease (AD) is an age‐related neurodegenerative disease. The most common pathological hallmarks are amyloid plaques and neurofibrillary tangles in the brain. In the brains of patients with AD, pathological tau is abnormally accumulated causing neuronal loss, synaptic dysfunction, and cognitive decline. We found a histone deacetylase 6 (HDAC6) inhibitor, CKD‐504, changed the tau interactome dramatically to degrade pathological tau not only in AD animal model (ADLPAPT) brains containing both amyloid plaques and neurofibrillary tangles but also in AD patient‐derived brain organoids. Acetylated tau recruited chaperone proteins such as Hsp40, Hsp70, and Hsp110, and this complex bound to novel tau E3 ligases including UBE2O and RNF14. This complex degraded pathological tau through proteasomal pathway. We also identified the responsible acetylation sites on tau. These dramatic tau‐interactome changes may result in tau degradation, leading to the recovery of synaptic pathology and cognitive decline in the ADLPAPT mice.  相似文献   
997.
Cancer is an age‐associated disease, potentially related to the altered immune system of elderly individuals. However, cancer has gradually decreased incidence in the eldest globally such as the most common lung cancer, the mechanisms of which remain to be elucidated. In this study, it was found that the number of lung‐resident γδT cells was significantly increased with altered gene expression in aged mice (20–24 months) versus young mice (10–16 weeks). Aged lung Vγ4+ and Vγ6+ γδT cells predominantly produced interleukin‐17A (IL‐17A), resulting in increased levels in the serum and lungs. Moreover, the aged mice exhibited smaller tumors and reduced numbers of tumor foci in the lungs after challenge with intravenous injection of B16/F10 melanoma cells compared with the young mice. Aged lung Vγ4+ and Vγ6+ γδT cells were highly cytotoxic to B16/F10 melanoma cells with higher expression levels of CD103. The markedly longer survival of the challenged aged mice was dependent on γδT17 cells, since neutralization of IL‐17A or depletion of indicated γδT cells significantly shortened the survival time. Consistently, supplementation of IL‐17A significantly enhanced the survival time of young mice with lung melanoma. Furthermore, the anti‐tumor activity of aged lung γδT17 cells was not affected by alterations in the load and composition of commensal microbiota, as demonstrated through co‐housing of the aged and young mice. Intrinsically altered lung γδT17 cells underlying age‐dependent changes control lung melanoma, which will help to better understand the lung cancer progression in the elderly and the potential use of γδT17 cells in anti‐tumor immunotherapy.  相似文献   
998.
999.
The antibacterial properties of self‐cleaning coatings are based on bactericide nanoparticles (NPs). Ecotoxicity of these NPs have been assessed mostly in suspension, using standard bioassays. Here a protocol is proposed to test actual coating samples, using the Vibrio fischeri bioluminescence inhibition bioassay. The protocol was designed to test bactericide properties of specially coated PVC floors being used in hospital environments under quasinatural conditions, such as prolonged exposure or room temperature. To take into consideration that the light output of the bacteria under prolonged exposure naturally changes, a correction factor is proposed.  相似文献   
1000.
Dy3+‐doped Y3Al5O12 phosphors were prepared at a relatively low temperature using molten salt synthesis. The phase of the prepared Dy3+‐doped Y3Al5O12 phosphors was confirmed using X‐ray powder diffraction. Results indicated that Dy3+ doping did not change the Y3Al5O12 phase. Following excitation at 352 nm, emission spectra of the Dy3+‐doped Y3Al5O12 phosphors consisted of blue, yellow, and red emission bands. The influence of Dy3+ concentration and excitation wavelength on emission was investigated. The ratio of yellow light to blue light varied with change in Dy3+ doping concentration, due to changes in the structure around Dy3+. Emission intensities also changed when the excitation wavelength was changed. This variation is luminescence generated a system for tunable white light for Dy3+‐doped Y3Al5O12 phosphors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号