首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   530篇
  免费   42篇
  国内免费   1篇
  2022年   6篇
  2021年   14篇
  2020年   4篇
  2019年   6篇
  2018年   9篇
  2017年   11篇
  2016年   9篇
  2015年   28篇
  2014年   17篇
  2013年   28篇
  2012年   37篇
  2011年   43篇
  2010年   15篇
  2009年   28篇
  2008年   13篇
  2007年   27篇
  2006年   33篇
  2005年   29篇
  2004年   26篇
  2003年   24篇
  2002年   18篇
  2001年   12篇
  2000年   16篇
  1999年   12篇
  1998年   21篇
  1997年   5篇
  1996年   6篇
  1995年   2篇
  1994年   10篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1985年   4篇
  1984年   5篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   5篇
  1976年   2篇
  1973年   1篇
  1972年   5篇
  1971年   2篇
排序方式: 共有573条查询结果,搜索用时 15 毫秒
51.
52.
Intracellular Ca2+ is vital for cell physiology. Disruption of Ca2+ homeostasis contributes to human diseases such as heart failure, neuron-degeneration, and diabetes. To ensure an effective intracellular Ca2+ dynamics, various Ca2+ transport proteins localized in different cellular regions have to work in coordination. The central role of mitochondrial Ca2+ transport mechanisms in responding to physiological Ca2+ pulses in cytosol is to take up Ca2+ for regulating energy production and shaping the amplitude and duration of Ca2+ transients in various micro-domains. Since the discovery that isolated mitochondria can take up large quantities of Ca2+ approximately 5 decades ago, extensive studies have been focused on the functional characterization and implication of ion channels that dictate Ca2+ transport across the inner mitochondrial membrane. The mitochondrial Ca2+ uptake sensitive to non-specific inhibitors ruthenium red and Ru360 has long been considered as the activity of mitochondrial Ca2+ uniporter (MCU). The general consensus is that MCU is dominantly or exclusively responsible for the mitochondrial Ca2+ influx. Since multiple Ca2+ influx mechanisms (e.g. L-, T-, and N-type Ca2+ channel) have their unique functions in the plasma membrane, it is plausible that mitochondrial inner membrane has more than just MCU to decode complex intracellular Ca2+ signaling in various cell types. During the last decade, four molecular identities related to mitochondrial Ca2+ influx mechanisms have been identified. These are mitochondrial ryanodine receptor, mitochondrial uncoupling proteins, LETM1 (Ca2+/H+ exchanger), and MCU and its Ca2+ sensing regulatory subunit MICU1. Here, we briefly review recent progress in these and other reported mitochondrial Ca2+ influx pathways and their differences in kinetics, Ca2+ dependence, and pharmacological characteristics. Their potential physiological and pathological implications are also discussed.  相似文献   
53.
Tsai JJ  Liu SH  Yin SC  Yang CN  Hsu HS  Chen WB  Liao EC  Lee WJ  Pan HC  Sheu ML 《PloS one》2011,6(9):e23249

Background

Allergic disease can be characterized as manifestations of an exaggerated inflammatory response to environmental allergens triggers. Mite allergen Der-p2 is one of the major allergens of the house dust mite, which contributes to TLR4 expression and function in B cells in allergic patients. However, the precise mechanisms of Der-p2 on B cells remain obscure.

Methodology/Principal Findings

We investigated the effects of Der-p2 on proinflammatory cytokines responses and Toll-like receptor-4 (TLR4)-related signaling in human B cells activation. We demonstrated that Der-p2 activates pro-inflammatory cytokines, TLR4 and its co-receptor MD2. ERK inhibitor PD98059 significantly enhanced TLR4/MD2 expression in Der-p2-treated B cells. Der-p2 markedly activated mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) and decreased p38 phosphorylation in B cells. MKP-1-siRNA downregulated TLR4/MD2 expression in Der-p2-treated B cells. In addition, Der-p2 significantly up-regulated expression of co-stimulatory molecules and increased B cell proliferation. Neutralizing Der-p2 antibody could effectively abrogate the Der-p2-induced B cell proliferation. Der-p2 could also markedly induce NF-κB activation in B cells, which could be counteracted by dexamethasone.

Conclusions/Significance

These results strongly suggest that Der-p2 is capable of triggering B cell activation and MKP-1-activated p38/MAPK dephosphorylation-regulated TLR4 induction, which subsequently enhances host immune, defense responses and development of effective allergic disease therapeutics in B cells.  相似文献   
54.
Hepatic cirrhosis is associated with negative nitrogen balance and loss of lean body mass. This study aimed to identify the specific proteolytic pathways activated in skeletal muscles of cirrhotic rats. TNF-alpha can stimulate muscle proteolysis; therefore, a potential relationship between TNF-alpha and muscle wasting in liver cirrhosis was also evaluated. Cirrhosis was induced by bile duct ligation (BDL) in male adult Sprague-Dawley rats. mRNA and protein levels of various targets were determined by RT-PCR and Western blotting, respectively. The proteolytic rate was measured ex vivo using isolated muscles. Compared with sham-operated controls, BDL rats had an increased degradation rate of muscle proteins and enhanced gene expression of ubiquitin, 14-kDa ubiquitin carrier protein E2, and the proteasome subunits C2 and C8 (P < 0.01). The muscle protein levels of free ubiquitin and conjugated ubiquitin levels were also elevated (P < 0.01). However, there was no difference between the two groups with regard to cathepsin and calpain mRNA levels. Cirrhotic muscle TNF-alpha levels were increased and correlated positively with free and conjugated ubiquitin (P < 0.01). We conclude that the ubiquitin-proteasome system is involved in muscle wasting of rats with BDL-induced cirrhosis. TNF-alpha might play a role in mediating activation of this proteolytic pathway, probably through a local mechanism.  相似文献   
55.
Yang YJ  Sheu BS  Lee SC  Yang HB  Wu JJ 《Helicobacter》2005,10(3):249-255
BACKGROUND: We tested whether Helicobacter pylori-infected dyspeptic mothers had a higher rate of H. pylori infection in their children, and whether such H. pylori-infected children were predisposed to iron deficiency or growth retardation. MATERIALS AND METHODS: A total of 163 children from 106 dyspeptic mothers (58 with and 48 without H. pylori infection) were enrolled to evaluate body weight, height, hemoglobin, serum ferritin, and H. pylori infection using the 13C-urea breath test. A questionnaire was used to evaluate demographic factors of each child. RESULTS: The rate of H. pylori infection in children with H. pylori-infected dyspeptic mothers was higher than that of children with noninfected mothers (20.5% vs. 5.3%; p<.01, OR: 4.6, 95% CI: 1.5-14.2). The rate of H. pylori infection in children elevated as the number of their H. pylori-infected siblings increased (p<.01). For children below 10 years of age, H. pylori infection was closely related to low serum ferritin and body weight growth (p<.05). CONCLUSION: The children of H. pylori-infected dyspeptic mothers had an increased risk for such infection. The risk further increased once their siblings were infected. H. pylori infection in pre-adolescent children may determine iron deficiency and growth retardation.  相似文献   
56.
Several free radical intermediates formed during synthesis of prostaglandin H synthase (PGHS) catalyze the biosynthesis of prostaglandins from arachidonic acid (AA). We attempted to directly detect free radical intermediates of PGHS in cells. Studies were carried out using human platelets, which possess significant PGHS activity. Electron spin resonance (ESR) spectra showed a g = 2.005 signal radical, which was formed by the incubation of collagen, thrombin, AA, and a variety of peroxides with human platelets. The ESR spectra obtained using 5,5-dimethyl-1 pyrroline N-oxide (DMPO) and alpha-phenyl N-tert.-butylnitron (PBN) were typical of an immobilized nitroxide. Extensive Pronase digestion of both the DMPO and PBN adducts allowed us to deduce that it was a carbon-centered radical. The formation of this radical was inhibited by potassium cyanide and by desferroxamine. Peroxides stimulated formation of the g = 2.005 signal radical and inhibited platelet aggregation induced by AA. PGHS cosubstrates increased the intensity of the radical signal but inhibited platelet aggregation induced by AA. Both S-nitro-L-glutathione and reduced glutathione quenched the g = 2.005 radical but could not restore platelet aggregatory activity. These results suggest that the carbon-centered radical is a self-destructing free radical formed during peroxide-mediated deactivation of PGHS in human platelets.  相似文献   
57.
Heme oxygenase-1 (HO-1), an inducible stress protein, has been implicated in cytoprotection against oxidative stress in vitro and in vivo. Estrogens also have antioxidant effects. This study investigated the time course of HO-1 and inducible nitric oxide synthase (iNOS) expression in the aortas of ovariectomized rats, and the regulatory relationship between the NO/NOS and the carbon monoxide/HO systems. HO-1 and iNOS protein expression was induced by ovariectomy (Ovx) and was extremely high 2-6 weeks after Ovx compared with the sham-operated group. Expression of the constitutive enzymes HO-2 and endothelial NOS did not differ significantly between sham-operated and Ovx rats. 17beta-Estradiol (E(2)) replacement reversed these changes in rats after Ovx. Long-term treatment with the antioxidant tempol significantly inhibited HO-1 and iNOS expression. The iNOS inhibitor aminoguanidine significantly suppressed the induction of HO-1. Oxidized glutathione in the hearts of Ovx rats increased gradually, with significant elevation at 3-6 weeks after Ovx compared with the sham-operated group, whereas plasma levels of NO metabolites were significantly reduced 4-6 weeks after Ovx. Treatment with the HO inhibitor zinc protoporphyrin IX blocked HO-1 induction, but significantly increased the plasma levels of NO metabolites. In conclusion, HO-1 is induced by oxidative stress resulting from E(2) depletion. The NO/iNOS system contributes to the induction of HO-1, which may subsequently suppress iNOS activity to modulate vasculoprotective effects after menopause.  相似文献   
58.
We have previously engineered a recombinant Pichia pastoris GS115 transformant, MSPGA-7, harboring seven copies of glucoamylase (GA) fused with modified signal peptide. High yield secretion of GA was achieved as an extra copy of SEC4 was integrated to the transformant. To elucidate the physiological role of SEC4, a dominant-negative mutant of SEC4, SEC4(S28N), was overexpressed under the control of alchohol oxidase 1 (AOX1) promoter in P. pastoris strain MSPGA-7 as well as a set of host cells harboring multi-copy of wild type SEC4. We found that SEC4(S28N) mutation in the key guanine nucleotide binding domain reduced guanine nucleotide binding affinity, hence it blocked the transport of vesicles required for targeting and fusion to the plasma membrane. The inhibitory levels of cell growth and GA secretion were correlated with the dosage of SEC4(S28N) gene. In addition, overexpression of SEC4 driven by AOX1 promoter in MSPGA-7 improved the secretory production of GA, but demonstrated the delay of cell growth by increased gene dosage of SEC4. Interestingly, a limited level of Sec4p did not disturb the cell growth. It was because expression of only one copy of SEC4 resulted in delay of cell growth at an early stage while still maintaining high level Sec4p at long-term incubation. Accordingly, as glyceraldehyde-3-phosphate dehydrogenase promoter was used to substitute AOX1 promoter to drive the SEC4 expression, enhanced GA secretion but not inhibition of cell growth was achieved. Taken together, our results demonstrate that SEC4 is essential for P. pastoris in regulating cell growth and heterologous protein secretion in a dosage-dependent manner.  相似文献   
59.

Background

Attention Deficit Hyperactivity Disorder, commonly referred to as ADHD, is a common, complex, predominately genetic but highly treatable disorder, which in its more severe form has such a profound effect on brain function that every aspect of the life of an affected individual may be permanently compromised. Despite the broad base of scientific investigation over the past 50 years supporting this statement, there are still many misconceptions about ADHD. These include believing the disorder does not exist, that all children have symptoms of ADHD, that if it does exist it is grossly over-diagnosed and over-treated, and that the treatment is dangerous and leads to a propensity to drug addiction. Since most misconceptions contain elements of truth, where does the reality lie?

Results

We have reviewed the literature to evaluate some of the claims and counter-claims. The evidence suggests that ADHD is primarily a polygenic disorder involving at least 50 genes, including those encoding enzymes of neurotransmitter metabolism, neurotransmitter transporters and receptors. Because of its polygenic nature, ADHD is often accompanied by other behavioral abnormalities. It is present in adults as well as children, but in itself it does not necessarily impair function in adult life; associated disorders, however, may do so. A range of treatment options is reviewed and the mechanisms responsible for the efficacy of standard drug treatments are considered.

Conclusion

The genes so far implicated in ADHD account for only part of the total picture. Identification of the remaining genes and characterization of their interactions is likely to establish ADHD firmly as a biological disorder and to lead to better methods of diagnosis and treatment.
  相似文献   
60.
Huang YL  Leu SF  Liu BC  Sheu CC  Huang BM 《Life sciences》2004,75(9):1051-1062
Cordyceps sinensis (CS), an Ascomycetes fungus parasitic to Lepidoptera larvae, has been traditionally used as nutritious food for the enhancement on sexual performance and the restitution of impairment in sexual function in Chinese society. We have previously demonstrated the stimulatory effect of CS and its fractions on steroidogenesis both on primary mouse Leydig cells and MA-10 mouse Leydig tumor cells. In the present studies, we determined the in vivo effects of CS and its fractions on steroidogenesis in mouse. Different concentrations of CS and CS fractions (0.02 and 0.2 mg/g body weight) were fed to immature or mature mice from 1 to 7 days. The plasma levels of testosterone were evaluated by radioimmunoassay. The weights of reproductive organs were also determined. Results illustrated that CS significantly induced plasma testosterone levels both in immature and mature mice in 3 and/or 7 days treatment (p < 0.05). F2 and F3 at 0.02 and/or 0.2 mg/g body weight for different feeding duration could also significantly stimulated plasma testosterone levels both in immature and mature mice (p < 0.05). In general, CS, F2 and F3 didn't have considerable effect on the weights of reproductive organs. Taken together, these studies illustrate that CS and its fractions significantly stimulated in vivo mouse testosterone production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号