首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   863篇
  免费   95篇
  958篇
  2022年   3篇
  2021年   9篇
  2020年   6篇
  2019年   7篇
  2018年   7篇
  2017年   4篇
  2016年   21篇
  2015年   34篇
  2014年   43篇
  2013年   43篇
  2012年   67篇
  2011年   53篇
  2010年   35篇
  2009年   35篇
  2008年   53篇
  2007年   57篇
  2006年   58篇
  2005年   58篇
  2004年   50篇
  2003年   53篇
  2002年   31篇
  2001年   21篇
  2000年   14篇
  1999年   11篇
  1998年   20篇
  1997年   11篇
  1996年   9篇
  1995年   9篇
  1994年   12篇
  1993年   10篇
  1992年   8篇
  1991年   10篇
  1990年   8篇
  1989年   7篇
  1988年   4篇
  1987年   6篇
  1986年   3篇
  1985年   7篇
  1984年   11篇
  1982年   7篇
  1981年   6篇
  1980年   3篇
  1979年   2篇
  1978年   6篇
  1977年   2篇
  1975年   7篇
  1974年   4篇
  1973年   4篇
  1972年   3篇
  1960年   1篇
排序方式: 共有958条查询结果,搜索用时 15 毫秒
61.
62.
Handschin C  Lin J  Rhee J  Peyer AK  Chin S  Wu PH  Meyer UA  Spiegelman BM 《Cell》2005,122(4):505-515
Inducible hepatic porphyrias are inherited genetic disorders of enzymes of heme biosynthesis. The main clinical manifestations are acute attacks of neuropsychiatric symptoms frequently precipitated by drugs, hormones, or fasting, associated with increased urinary excretion of delta-aminolevulinic acid (ALA). Acute attacks are treated by heme infusion and glucose administration, but the mechanisms underlying the precipitating effects of fasting and the beneficial effects of glucose are unknown. We show that the rate-limiting enzyme in hepatic heme biosynthesis, 5-aminolevulinate synthase (ALAS-1), is regulated by the peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha). Elevation of PGC-1alpha in mice via adenoviral vectors increases the levels of heme precursors in vivo as observed in acute attacks. The induction of ALAS-1 by fasting is lost in liver-specific PGC-1alpha knockout animals, as is the ability of porphyrogenic drugs to dysregulate heme biosynthesis. These data show that PGC-1alpha links nutritional status to heme biosynthesis and acute hepatic porphyria.  相似文献   
63.
Cross-talk between growth factor receptors and the estrogen receptor (ER) has been proposed as a signaling mechanism in estrogen target tissues, with ER(alpha) as a direct target of growth factor receptor-activated signals, leading to regulation of estrogen target genes and estrogen-like biological responses to growth factors. We evaluated whether global genomic changes in the mouse uterus in response to epidermal growth factor or IGF-I mimic those of estradiol (E2), reflecting the cross-talk mechanism. Overlapping responses to growth factors and E2 were expected in the wild type (WT) whereas no response was expected in mice lacking ER(alpha) (ER(alpha) knockout). Surprisingly, although most of the E2 response in the WT also occurred after growth factor treatment, some genes were induced only by E2. Second, although E2 did not induce gene changes in the ER(alpha) knockout, the growth factor response was almost indistinguishable from that of the WT. Differences in response of some genes to IGF-I or epidermal growth factor indicated selective regulation mechanisms, such as phosphatidylinositol 3-kinase or MAPK-dependent responses. The robust ER(alpha)-independent genomic response to growth factor observed here is surprising considering that the biological growth response is ER(alpha) dependent. We propose two mechanisms as alternatives to the cross-talk mechanism for uterine gene regulation. First, E2 increases uterine growth factors, which activate downstream signaling cascades, resulting in gene regulation. Second, growth factors and estrogen regulate similar genes. Our results suggest that the estrogen response in the uterus involves E2-specific ER(alpha)-mediated responses as well as responses resulting from convergence of growth factor and ER-initiated activities.  相似文献   
64.
The role of inosine monophosphate dehydrogenase (IMPDH) at the metabolic branch point of de novo purine nucleotide biosynthesis makes this enzyme an attractive probe for the discovery of antiviral compounds. Introduction of unsaturation at the 2-position of IMP, the natural substrate for IMPDH, produces Michael acceptors at that position, which results in these compounds being inhibitors of IMPDH. Consistent with this mechanism-based molecular design, some of the parent nucleosides exhibited antiviral activity.  相似文献   
65.
The core oligosaccharide component of the lipopolysaccharide can be subdivided into inner and outer core regions. In Escherichia coli, the inner core consists of two 3-deoxy-d-manno-octulosonic acid and three glycero-manno-heptose residues. The HldE protein participates in the biosynthesis of ADP-glycero-manno-heptose precursors used in the assembly of the inner core. HldE comprises two functional domains: an N-terminal region with homology to the ribokinase superfamily (HldE1 domain) and a C-terminal region with homology to the cytidylyltransferase superfamily (HldE2 domain). We have employed the structure of the E. coli ribokinase as a template to model the HldE1 domain and predict critical amino acids required for enzyme activity. Mutation of these residues renders the protein inactive as determined in vivo by functional complementation analysis. However, these mutations did not affect the secondary or tertiary structure of purified HldE1, as judged by fluorescence spectroscopy and circular dichroism. Furthermore, in vivo coexpression of wild-type, chromosomally encoded HldE and mutant HldE1 proteins with amino acid substitutions in the predicted ATP binding site caused a dominant negative phenotype as revealed by increased bacterial sensitivity to novobiocin. Copurification experiments demonstrated that HldE and HldE1 form a complex in vivo. Gel filtration chromatography resulted in the detection of a dimer as the predominant form of the native HldE1 protein. Altogether, our data support the notions that the HldE functional unit is a dimer and that structural components present in each HldE1 monomer are required for enzymatic activity.  相似文献   
66.
The CATERPILLER (CLR, also NOD and NLR) proteins share structural similarities with the nucleotide binding domain (NBD)-leucine-rich repeat (LRR) superfamily of plant disease-resistance (R) proteins and are emerging as important immune regulators in animals. CLR proteins contain NBD-LRR motifs and are linked to a limited number of distinct N-terminal domains including transactivation, CARD (caspase activation and recruitment), and pyrin domains (PyD). The CLR gene, Monarch-1/Pypaf7, is expressed by resting primary myeloid/monocytic cells, and its expression in these cells is reduced by Toll-like receptor (TLR) agonists tumor necrosis factor (TNF) alpha and Mycobacterium tuberculosis. Monarch-1 reduces NFkappaB activation by TLR-signaling molecules MyD88, IRAK-1 (type I interleukin-1 receptor-associated protein kinase), and TRAF6 (TNF receptor (TNFR)-associated factor) as well as TNFR signaling molecules TRAF2 and RIP1 but not the downstream NFkappaB subunit p65. This indicates that Monarch-1 is a negative regulator of both TLR and TNFR pathways. Reducing Monarch-1 expression with small interference RNA in myeloid/monocytic cells caused a dramatic increase in NFkappaB activation and cytokine expression in response to TLR2/TLR4 agonists, TNFalpha, or M. tuberculosis infection, suggesting that Monarch-1 is a negative regulator of inflammation. Because Monarch-1 is the first CLR protein that interferes with both TLR2 and TLR4 activation, the mechanism of this interference is significant. We find that Monarch-1 associates with IRAK-1 but not MyD88, resulting in the blockage of IRAK-1 hyperphosphorylation. Mutants containing the NBD-LRR or PyD-NBD also blocked IRAK-1 activation. This is the first example of a CLR protein that antagonizes inflammatory responses initiated by TLR agonists via interference with IRAK-1 activation.  相似文献   
67.
Natural Abs have been implicated in initiating mesenteric ischemia/reperfusion (I/R)-induced tissue injury. Autoantibodies have affinity and self-Ag recognition patterns similar to natural Abs. We considered that autoimmunity-prone mice that express high titers of autoantibodies should have enhanced I/R-induced injury. Five-month-old B6.MRL/lpr mice displayed accelerated and enhanced intestinal I/R-induced damage compared with 2-mo-old B6.MRL/lpr and age-matched C57BL/6 mice. Similarly, older autoimmune mice had accelerated remote organ (lung) damage. Infusion of serum IgG derived from 5-mo-old but not 2-mo-old B6.MRL/lpr into I/R resistant Rag-1-/- mice rendered them susceptible to local and remote organ injury. Injection of monoclonal IgG anti-DNA and anti-histone Abs into Rag-1-/- mice effectively reconstituted tissue injury. These data show that like natural Abs, autoantibodies, such as anti-dsDNA and anti-histone Abs, can instigate I/R injury and suggest that they are involved in the development of tissue damage in patients with systemic lupus erythematosus.  相似文献   
68.
Metalloproteases are a large, diverse class of enzymes involved in many physiological and disease processes. Metalloproteases are regulated by post-translational mechanisms that diminish the effectiveness of conventional genomic and proteomic methods for their functional characterization. Chemical probes directed at active sites offer a potential way to measure metalloprotease activities in biological systems; however, large variations in structure limit the scope of any single small-molecule probe aimed at profiling this enzyme class. Here, we address this problem by creating a library of metalloprotease-directed probes that show complementary target selectivity. These probes were applied as a 'cocktail' to proteomes and their labeling profiles were analyzed collectively using an advanced liquid chromatography-mass spectrometry platform. More than 20 metalloproteases were identified, including members from nearly all of the major branches of this enzyme class. These findings suggest that chemical proteomic methods can serve as a universal strategy to profile the activity of the metalloprotease superfamily in complex biological systems.  相似文献   
69.
A sensitive HPLC-tandem mass spectrometry method was developed for determination of buspirone levels in human plasma. After solid phase extraction and reversed phase HPLC separation, detection of buspirone and the internal standard (prazosin) was performed using eletrospray ionization and selected reaction monitoring in the positive ion mode. Linear calibration curves were established over a concentration range of 0.025-2.5 ng/ml when 0.5 ml aliquots of plasma were used. Satisfactory results of within-day precision (RSD of 1.9-7.7%) and accuracy (% difference of 0.5-6.6%) and between-day precision (RSD of 3.7-11.1%) and accuracy (% difference of 2.2-6.8%) were obtained. The assay has been successfully applied to the analysis of buspirone levels in more than 500 human plasma samples collected from a drug interaction study.  相似文献   
70.
Primate lab diets typically contain high vitamin A concentrations when compared with human recommended intakes. In this study, we analyzed the vitamin A contents of liver and serum from 13 adult female African green vervet monkeys (Chlorocebus aethiops). These monkeys were wild-caught and held in captivity for 2 y, during which time they consumed a standard primate diet. Liver vitamin A concentration (mean +/- 1 standard deviation) was 14.6 +/- 2.3 micromol retinol/g liver; subtoxicity in humans is defined as at least 1 micromol/g liver. The serum retinol concentration (0.93 +/- 0.21 microM) was not elevated. Hypertrophy and hyperplasia of hepatic stellate cells were present which, in conjunction with elevated hepatic vitamin A concentrations, are evidence of toxicity. Although the ramifications of chronically toxic vitamin A status in experimental monkeys have not been defined, this state may influence nonhuman primate research outcomes and confound data interpretation. The validity of bone mineral research using nonhuman primates is of greatest concern, in light of the association between vitamin A toxicity and compromised bone health.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号