首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   19篇
  国内免费   1篇
  225篇
  2022年   2篇
  2021年   2篇
  2018年   5篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   7篇
  2013年   9篇
  2012年   10篇
  2011年   9篇
  2010年   5篇
  2009年   4篇
  2008年   7篇
  2006年   8篇
  2005年   4篇
  2004年   10篇
  2003年   9篇
  2002年   5篇
  2001年   5篇
  2000年   5篇
  1999年   4篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1990年   5篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1982年   4篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1975年   3篇
  1973年   3篇
  1972年   3篇
  1971年   3篇
  1970年   3篇
  1968年   2篇
  1965年   2篇
  1964年   3篇
  1960年   2篇
  1955年   1篇
  1954年   3篇
  1952年   11篇
  1951年   11篇
  1950年   8篇
  1944年   1篇
  1940年   1篇
排序方式: 共有225条查询结果,搜索用时 0 毫秒
161.
162.
163.
164.
165.
166.
167.
168.
In the budding yeast Saccharomyces cerevisiae, progress of the cell cycle beyond the major control point in G1 phase, termed START, requires activation of the evolutionarily conserved Cdc28 protein kinase by direct association with GI cyclins. We have used a conditional lethal mutation in CDC28 of S. cerevisiae to clone a functional homologue from the human fungal pathogen Candida albicans. The protein sequence, deduced from the nucleotide sequence, is 79% identical to that of S. cerevisiae Cdc28 and as such is the most closely related protein yet identified. We have also isolated from C. albicans two genes encoding putative G1 cyclins, by their ability to rescue a conditional GI cyclin defect in S. cerevisiae; one of these genes encodes a protein of 697 amino acids and is identical to the product of the previously described CCN1 gene. The second gene codes for a protein of 465 residues, which has significant homology to S. cerevisiae Cln3. These data suggest that the events and regulatory mechanisms operating at START are highly conserved between these two organisms.  相似文献   
169.
Molecular signaling networks are ubiquitous across life and likely evolved to allow organisms to sense and respond to environmental change in dynamic environments. Few examples exist regarding the dispensability of signaling networks, and it remains unclear whether they are an essential feature of a highly adapted biological system. Here, we show that signaling network function carries a fitness cost in yeast evolving in a constant environment. We performed whole-genome, whole-population Illumina sequencing on replicate evolution experiments and find the major theme of adaptive evolution in a constant environment is the disruption of signaling networks responsible for regulating the response to environmental perturbations. Over half of all identified mutations occurred in three major signaling networks that regulate growth control: glucose signaling, Ras/cAMP/PKA and HOG. This results in a loss of environmental sensitivity that is reproducible across experiments. However, adaptive clones show reduced viability under starvation conditions, demonstrating an evolutionary tradeoff. These mutations are beneficial in an environment with a constant and predictable nutrient supply, likely because they result in constitutive growth, but reduce fitness in an environment where nutrient supply is not constant. Our results are a clear example of the myopic nature of evolution: a loss of environmental sensitivity in a constant environment is adaptive in the short term, but maladaptive should the environment change.  相似文献   
170.
The New Forest National Park is a hotspot for biodiversity in the UK. A long history of grazing by ponies in the New Forest landscape has created a diverse mosaic of habitats that are of international significance. We investigated patterns of species diversity and composition across the New Forest landscape by sampling soil, leaf litter and ground macrofauna from woodland, grassland and heathland plots across the entire landscape. We used a spatially replicated design of hand sorted soil pits, Winkler extraction of leaf litter, and pitfall traps. We concentrated on diversity patterns of the following target groups: Coleoptera, Formicidae, Isopoda, Chilopoda, Diplopoda, Opiliones and Lumbricidae. The most striking difference in species assemblages is between wooded and open areas. Woodlands are the most diverse habitats and have a distinct assemblage, largely due to those leaf litter invertebrate species which are only present under a closed canopy. Open areas are less diverse, with diversity particularly low in the wet grasslands. However, the open areas do have a distinct fauna, especially in the wet and dry heaths which are home to a number of rare species, particularly of Formicidae. We discuss the potential conservation problems facing the New Forest and how these might affect soil macrofauna biodiversity in the future and conclude that climate change; over-grazing; and land use changes represent the largest threats. Although a relatively stable landscape which benefits from protection under UK law, changes in grazing intensity or management practices in the New Forest, particularly for some of the habitats of European importance (e.g. wet heathlands), could negatively affect soil macrofauna biodiversity. Climate change may also exacerbate biodiversity decline as a result of increased grazing intensity or changes in management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号