首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1481篇
  免费   117篇
  国内免费   2篇
  1600篇
  2022年   11篇
  2021年   43篇
  2020年   25篇
  2019年   17篇
  2018年   22篇
  2017年   18篇
  2016年   29篇
  2015年   50篇
  2014年   71篇
  2013年   84篇
  2012年   100篇
  2011年   94篇
  2010年   76篇
  2009年   45篇
  2008年   82篇
  2007年   104篇
  2006年   83篇
  2005年   86篇
  2004年   96篇
  2003年   79篇
  2002年   78篇
  2001年   21篇
  2000年   15篇
  1999年   14篇
  1998年   29篇
  1997年   10篇
  1996年   11篇
  1995年   8篇
  1994年   13篇
  1993年   13篇
  1992年   7篇
  1991年   6篇
  1990年   11篇
  1989年   6篇
  1988年   11篇
  1987年   6篇
  1986年   6篇
  1985年   12篇
  1984年   9篇
  1983年   6篇
  1982年   7篇
  1981年   10篇
  1980年   13篇
  1979年   7篇
  1978年   5篇
  1977年   5篇
  1976年   4篇
  1974年   11篇
  1973年   5篇
  1965年   3篇
排序方式: 共有1600条查询结果,搜索用时 15 毫秒
81.
The gene cbhA from the cellulolytic bacterium Cellulomonas fimi encodes a protein of 872 amino acids designated cellobiohydrolase A (CbhA). Mature CbhA contains 832 amino acid residues and has a predicted molecular mass of 85 349 Da. It is composed of five domains: an N-terminal catalytic domain, three repeated sequences of 95 amino acids, and a C-terminal cellulose-binding domain typical of other C. fimi glycanases. The structure and enzymatic activities of the CbhA cataiytic domain are closely related to those of CBH ll, an exocelloblohydrolase in the glycosyl hydrolase family B from the fungus Trichoderma reesel. CbhA is the first such enzyme to be characterized in bacteria. The data support the proposal that extended loops around the active site distinguish exohydrolases from endohydrolases in this enzyme family.  相似文献   
82.
In this work, a new derivative of FX was engineered. It comprises a cellulose-binding module (CBM) fused to the N-terminus of the truncated light chain (E2FX) of FX and a hexahistidine tag (H6) fused to the C-terminus of the heavy chain. The sequence LTR at the site of cleavage of the activation peptide from the N-terminus of the heavy chain is changed to IEGR to render the derivative self-activating. However, N-linked glycans on the CBM of the derivative blocked its binding to cellulose and those on the activation peptide slowed its activation. Therefore, the sites of N-linked glycosylation on the CBM and on the activation peptide were eliminated by mutation. The final derivative can be produced in good yield by cultured mammalian cells. It is purified easily with Ni(2+)-agarose, it is self-activating, and it can be immobilized on cellulose. When immobilized on a column of cellulose beads, the activated derivative retains approximately 80% of its initial activity after 30 days of continuous hydrolysis of a fusion protein substrate. Under these conditions of operation, the effective substrate:enzyme ratio is >10(4).  相似文献   
83.
In order to gain a more global view of the activity of histone demethylases, we report here genome-wide studies of the fission yeast SWIRM and polyamine oxidase (PAO) domain homologues of mammalian LSD1. Consistent with previous work we find that the two S. pombe proteins, which we name Swm1 and Swm2 (after SWIRM1 and SWIRM2), associate together in a complex. However, we find that this complex specifically demethylates lysine 9 in histone H3 (H3K9) and both up- and down-regulates expression of different groups of genes. Using chromatin-immunoprecipitation, to isolate fragments of chromatin containing either H3K4me2 or H3K9me2, and DNA microarray analysis (ChIP-chip), we have studied genome-wide changes in patterns of histone methylation, and their correlation with gene expression, upon deletion of the swm1(+) gene. Using hyper-geometric probability comparisons we uncover genetic links between lysine-specific demethylases, the histone deacetylase Clr6, and the chromatin remodeller Hrp1. The data presented here demonstrate that in fission yeast the SWIRM/PAO domain proteins Swm1 and Swm2 are associated in complexes that can remove methyl groups from lysine 9 methylated histone H3. In vitro, we show that bacterially expressed Swm1 also possesses lysine 9 demethylase activity. In vivo, loss of Swm1 increases the global levels of both H3K9me2 and H3K4me2. A significant accumulation of H3K4me2 is observed at genes that are up-regulated in a swm1 deletion strain. In addition, H3K9me2 accumulates at some genes known to be direct Swm1/2 targets that are down-regulated in the swm1Delta strain. The in vivo data indicate that Swm1 acts in concert with the HDAC Clr6 and the chromatin remodeller Hrp1 to repress gene expression. In addition, our in vitro analyses suggest that the H3K9 demethylase activity requires an unidentified post-translational modification to allow it to act. Thus, our results highlight complex interactions between histone demethylase, deacetylase and chromatin remodelling activities in the regulation of gene expression.  相似文献   
84.
The Notch signaling pathway plays a key role in a myriad of cellular processes, including cell fate determination. Despite extensive study of the downstream consequences of receptor activation, very little molecular data are available for the initial binding event between the Notch receptor and its ligands. In this study, we have expressed and purified a natively folded wild-type epidermal growth factor-like domain (EGF) 11-14 construct from human Notch-1 and have used flow cytometry and surface plasmon resonance analysis to demonstrate a calcium-dependent interaction with the human ligand Delta-like-1. Site-directed mutagenesis of three of the calcium-binding sites within the Notch-(11-14) fragment indicated that only loss of calcium binding to EGF12, and not EGF11 or EGF13, abrogates ligand binding. Further mapping of the ligand-binding site within this region by limited proteolysis of Notch wild-type and mutant fragments suggested that EGF12 rather than EGF11 contains the major Delta-like-1-binding site. Analysis of an extended fragment EGF-(10-14), where EGF11 is placed in a native context, surprisingly demonstrated a reduction in ligand binding, suggesting that EGF10 modulates binding by limiting access of ligand. This inhibition could be overcome by the introduction of a calcium binding mutation in EGF11, which decouples the EGF-(10-11) module interface. This study therefore demonstrates that long range calcium-dependent structural perturbations can influence the affinity of Notch for its ligand, in the absence of any post-translational modifications.  相似文献   
85.
Pollen-tube cell walls are unusual in that they are composed almost entirely of callose, a (1,3)--linked glucan with a few 6-linked branches. Regulation of callose synthesis in pollen tubes is under developmental control, and this contrasts with the deposition of callose in the walls of somatic plant cells which generally occurs only in response to wounding or stress. The callose synthase (uridine-diphosphate glucose: 1,3--d-glucan 3--d-glucosyl transferase, EC 2.4.1.34) activities of membrane preparations from cultured pollen tubes and suspension-cultured cells of Nicotiana alata Link et Otto (ornamental tobacco) exhibited different kinetic and regulatory properties. Callose synthesis by membrane preparations from pollen tubes was not stimulated by Ca2+ or other divalent cations, and exhibited Michaelis-Menten kinetics only between 0.25 mM and 6 mM uridine-diphosphate glucose (K m 1.5–2.5 mM); it was activated by -glucosides and compatible detergents. In contrast, callose synthesis by membrane preparations from suspension-cultured cells was dependent on Ca2+, and in the presence of 2 mM Ca2+ exhibited Michaelis-Menten kinetics above 0.1 mM uridine-diphosphate glucose (K m 0.45 mM); it also required a -glucoside and low levels of compatible detergent for full activity, but was rapidly inactivated at higher levels of detergent. Callose synthase activity in pollen-tube membranes increased ten fold after treatment of the membranes with trypsin in the presence of detergent, with no changes in cofactor requirements. No increase in callose synthase activity, however, was observed when membranes from suspension-cultured cells were treated with trypsin. The insoluble polymeric product of the pollen-tube enzyme was characterised as a linear (1,3)--d-glucan with no 6-linked glucosyl branches, and the same product was synthesised irrespective of the assay conditions employed.Abbreviations Ara l-arabinose - CHAPS 3-[(3-cholamidopropyl)dimethylammonia]-1-propane sulphonic acid - DAP diphenylamine-aniline-phosphoric acid stain - Gal d-galactose - Glc d-glucose - Man d-mannose - Mes 2-(N-morpholino)ethane sulphonic acid - Rha d-rhamnose - Rib d-ribose - TFA trifluoroacetic acid - UDPGlc uridine-diphosphate glucose - Xyl d-xylose This research was supported by funds from a Special Research Centre of the Australian Research Council. H.S. was funded by a Melbourne University Postgraduate Scholarship and an Overseas Postgraduate Research Studentship; S.M.R. was supported by a Queen Elizabeth II Research Fellowship. We thank Bruce McGinness and Susan Mau for greenhouse assistance, and Deborah Delmer and Adrienne Clarke for advice and encouragement throughout this project.  相似文献   
86.
The temperature dependence of the partial reactions leading to turn-over of the UQH2:cyt c 2 oxidoreductase of Rhodobacter sphaeroides have been studied. The redox properties of the cytochrome components show a weak temperature dependence over the range 280–330 K, with coefficients of about 1 m V per degree; our results suggest that the other components show similar dependencies, so that no significant change in the gradient of standard free-energy between components occurs over this temperature range. The rates of the reactions of the high potential chain (the Rieske iron sulfur center, cytochromes c 1 and c 2, reaction center primary donor) show a weak temperature dependence, indicating an activation energy < 8 kJ per mole for electron transfer in this chain. The oxidation of ubiquinol at the Qz-site of the complex showed a strong temperature dependence, with an activation energy of about 32 kJ mole–1. The electron transfer from cytochrome b-566 to cytochrome b-561 was not rate determining at any temperature, and did not contribute to the energy barrier. The activation energy of 32 kJ mole–1 for quinol oxidation was the same for all states of the quinone pool (fully oxidized, partially reduced, or fully reduced before the flash). We suggest that the activation barrier is in the reaction by which ubiquinol at the catalytic site is oxidized to semiquinone. The most economical scheme for this reaction would have the semiquinone intermediate at the energy level indicated by the activation barrier. We discuss the plausibility of this simple model, and the values for rate constants, stability constant, the redox potentials of the intermediate couples, and the binding constant for the semiquinone, which are pertinent to the mechanism of the ubiquinol oxidizing site.Abbreviations (BChl)2 P870, primary donor of the photochemical reaction center - b/c 1 complex ubiquinol: cytochrome c 2 oxidoreductase - cyt b H cytochrome b-561 or higher potential cytochrome b - cyt b L cytochrome b-566, or low potential cytochrome b - cyt c 1, cyt c 2, cyt c t cytochromes c 1 and c 2, and total cytochrome c (cyt c 1 and cyt c 2) - Fe.S Rieske-type iron sulfur center, Q - QH2 ubiquinone, ubiquinol - Qz, QzH2, Qz ubiquinone, ubiquinol, and semiquinone anion of ubiquinone, bound at quinol oxidizing site - Qz-site ubiquinol oxidizing site (also called Qo-(outside) - Qo (Oxidizing) - QP (Positive proton potential) site) - Qc-site uubiquinone reductase site (also called the Qi-(inside) - QR (Reducing), or - QN (Negative proton potential) site) - UHDBT 5-(n-undecyl)-6-hydroxy-4,7-dioxobenzothiazol  相似文献   
87.
To date, there are no vaccines against any of the major parasitic diseases, and chemotherapy is the main weapon in our arsenal. There is an urgent need for better drugs against Leishmania. With the completion of the human genome sequence and soon that of Leishmania, for the first time we have the opportunity to identify novel chemotherapeutic treatments. This requires the exploitation of a variety of technologies. The major challenge is to take the process from discovery of drug candidates all the way along the arduous path to the marketplace. A crucial component will be the forging of partnerships between the pharmaceutical industry and publicly funded scientists to ensure that the promise of the current revolution in biology lives up to our hopes and expectations.  相似文献   
88.
89.
Seed clusters of individual locules from fruit capsules of Gossypium arboreum L. with adhering intact fibres were fed with radioactive uridinediphosphoglucose (UDPG), guanosinediphosphoglucose (GDPG), glucose and sucrose. The incorporation into high molecular weight glucans of the fibres was studied. For primary wall fibres, UDPG at 1 mM was by far the best precursor, whereas sucrose was the best precursor for secondary wall fibres. No competition was observed between the incorporation of glucose from UDPG and from sucrose when the two were fed simultaneously to secondary wall fibres, indicating that their metabolic pathways are well separated when they are fed from the apoplast. Inhibitors of respiratory ATP-formation strongly inhibited incorporation of sucrose but not that of UDPG. Sucrose incorporation was studied at five different stages of development of the cotton fibres. At the stage of most intense secondary wall formation the incorporation rate was about 300 times that during primary wall formation (24 days post anthesis (DPA)). Incorporation from 1 mM UDPG or GDPG by secondary wall fibres (35 DPA) was less than twice that of primary wall fibres (22 DPA), indicating that the two sugar nucleotides are not readily used as precursors for secondary wall cellulose when they are fed to the exterior of intact cells. The high molecular weight non-cellulosic glucans formed from UDPG and sucrose at 5 and 1,000 M were solubilized in strongly alkaline solutions or dimethyl-sulfoxide (DMSO) and were partially characterized by degradation with an exo--1,3-glucanase. After feeding for one hour, at most 1/3 of the radioactivity in high molecular weight material was found in cellulose and at least 2/3 in -1,3-glucan. The proportions varied little for fibres in the age range of 30 to 48 DPA when sucrose was the precursor although the total incorporation varied by a factor of about four. The fact that at all stages of secondary wall formation -1,3-glucan is synthesized at a very high rate, but that the total amount in the cell wall does not exceed 2% in the later stages of wall formation, can be interpreted in terms of a high turnover of this polysaccharide if it is assumed that wound effects are negligible in the system under study.Abbreviations UDPG uridinediphosphoglucose - GDPG guanosinediphosphoglucose - HEPES N-2-hydroxyethylpiperazine-N-2-ethansulphonic acid - DMSO dimethyl-sulfoxide - DNP 2,4-dinitrophenol - DPA days post anthesis  相似文献   
90.
Rhamnogalacturonan‐II (RG‐II) is structurally the most complex glycan in higher plants, containing 13 different sugars and 21 distinct glycosidic linkages. Two monomeric RG‐II molecules can form an RG‐II‐borate diester dimer through the two apiosyl (Api) residues of side chain A to regulate cross‐linking of pectin in the cell wall. But the relationship of Api biosynthesis and RG‐II dimer is still unclear. In this study we investigated the two homologous UDP‐D‐apiose/UDP‐D‐xylose synthases (AXSs) in Arabidopsis thaliana that synthesize UDP‐D‐apiose (UDP‐Api). Both AXSs are ubiquitously expressed, while AXS2 has higher overall expression than AXS1 in the tissues analyzed. The homozygous axs double mutant is lethal, while heterozygous axs1/+ axs2 and axs1 axs2/+ mutants display intermediate phenotypes. The axs1/+ axs2 mutant plants are unable to set seed and die. By contrast, the axs1 axs2/+ mutant plants exhibit loss of shoot and root apical dominance. UDP‐Api content in axs1 axs2/+ mutants is decreased by 83%. The cell wall of axs1 axs2/+ mutant plants is thicker and contains less RG‐II‐borate complex than wild‐type Col‐0 plants. Taken together, these results provide direct evidence of the importance of AXSs for UDP‐Api and RG‐II‐borate complex formation in plant growth and development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号