首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   482篇
  免费   13篇
  495篇
  2023年   2篇
  2022年   9篇
  2021年   20篇
  2020年   6篇
  2019年   4篇
  2018年   7篇
  2017年   10篇
  2016年   5篇
  2015年   21篇
  2014年   23篇
  2013年   14篇
  2012年   28篇
  2011年   31篇
  2010年   24篇
  2009年   11篇
  2008年   22篇
  2007年   14篇
  2006年   25篇
  2005年   14篇
  2004年   18篇
  2003年   16篇
  2002年   10篇
  2001年   8篇
  2000年   10篇
  1999年   7篇
  1998年   4篇
  1997年   2篇
  1995年   2篇
  1992年   9篇
  1991年   9篇
  1990年   6篇
  1989年   8篇
  1988年   11篇
  1987年   10篇
  1986年   11篇
  1985年   7篇
  1984年   5篇
  1983年   4篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1977年   3篇
  1975年   2篇
  1973年   4篇
  1972年   3篇
  1971年   3篇
  1970年   4篇
  1969年   2篇
  1939年   2篇
排序方式: 共有495条查询结果,搜索用时 15 毫秒
71.
Somatopause refers to the gradual declines in growth hormone (GH) and insulin‐like growth factor‐1 throughout aging. To define how induced somatopause affects skeletal integrity, we used an inducible GH receptor knockout (iGHRKO) mouse model. Somatopause, induced globally at 6 months of age, resulted in significantly more slender bones in both male and female iGHRKO mice. In males, induced somatopause was associated with progressive expansion of the marrow cavity leading to significant thinning of the cortices, which compromised bone strength. We report progressive declines in osteocyte lacunar number, and increases in lacunar volume, in iGHRKO males, and reductions in lacunar number accompanied by ~20% loss of overall canalicular connectivity in iGHRKO females by 30 months of age. Induced somatopause did not affect mineral/matrix ratio assessed by Raman microspectroscopy. We found significant increases in bone marrow adiposity and high levels of sclerostin, a negative regulator of bone formation in iGHRKO mice. Surprisingly, however, despite compromised bone morphology, osteocyte senescence was reduced in the iGHRKO mice. In this study, we avoided the confounded effects of constitutive deficiency in the GH/IGF‐1 axis on the skeleton during growth, and specifically dissected its effects on the aging skeleton. We show here, for the first time, that induced somatopause compromises bone morphology and the bone marrow environment.  相似文献   
72.
73.

Chitin is a long unbranched polysaccharide, made up of β-1,4-linked N-acetylglucosamine which forms crystalline fiber-like structure. It is present in the fungal cell walls, insect and crustacean cuticles, nematode eggshells, and protozoa cyst. We provide a critical appraisal on the chemical modifications of chitin and its derivatives in the context of their improved efficacy in medical applications without any side effect. Recent advancement in nanobiotechnology has helped to synthesize several chitin derivatives having significant biological applications. Here, we discuss the molecular diversity of chitin and its applications in enzyme immobilization, wound healing, packaging material, controlled drug release, biomedical imaging, gene therapy, agriculture, biosensor, and cosmetics. Also, we highlighted chitin and its derivatives as an antioxidant, antimicrobial agent, anticoagulant material, food additive, and hypocholesterolemic agent. We envisage that chitin and chitosan-based nanomaterials with their potential applications would augment nanobiotechnology and biomedical industries.

  相似文献   
74.
Methionine is an essential amino acid the low level of which limits the nutritional quality of plants. We formerly produced transgenic tobacco (Nicotiana tabacum) plants overexpressing CYSTATHIONE γ‐SYNTHASE (CGS) (FA plants), methionine's main regulatory enzyme. These plants accumulate significantly higher levels of methionine compared with wild‐type (WT) plants. The aim of this study was to gain more knowledge about the effect of higher methionine content on the metabolic profile of vegetative tissue and on the morphological and physiological phenotypes. FA plants exhibit slightly reduced growth, and metabolic profiling analysis shows that they have higher contents of stress‐related metabolites. Despite this, FA plants were more sensitive to short‐ and long‐term oxidative stresses. In addition, compared with WT plants and transgenic plants expressing an empty vector, the primary metabolic profile of FA was altered less during oxidative stress. Based on morphological and metabolic phenotypes, we strongly proposed that FA plants having higher levels of methionine suffer from stress under non‐stress conditions. This might be one of the reasons for their lesser ability to cope with oxidative stress when it appeared. The observation that their metabolic profiling is much less responsive to stress compared with control plants indicates that the delta changes in metabolite contents between non‐stress and stress conditions is important for enabling the plants to cope with stress conditions.  相似文献   
75.
Inhibition of sodium-dependent glucose transporter 2 (SGLT2), the transporter that is responsible for renal re-uptake of glucose, leads to glucosuria in animals. SGLT-mediated glucosuria provides a mechanism to shed excess plasma glucose to ameliorate diabetes-related hyperglycemia and associated complications. The current study demonstrates that the proper relationship of a 4′-substituted benzyl group to a β-1C-phenylglucoside is important for potent and selective SGLT2 inhibition. The lead C-arylglucoside (7a) demonstrates superior metabolic stability to its O-arylglucoside counterpart (4) and it promotes glucosuria when administered in vivo.  相似文献   
76.
Polyphenol oxidase (PPO) activity has been reported in orchard grass (Dactylis glomerata); however, to date, no endogenous substrates have been identified. In the present study, we report the isolation and structural elucidation of PPO substrates in this species. The free phenol fraction was extracted, separated by reverse-phase chromatography and six potential substrates, including two hydroxycinnamate esters, were identified by UV spectrometry, electrospray ionisation-tandem mass spectrometry (LC-ESI-MSn) and 1D and 2D NMR analyses (1H NMR, 13C NMR, DEPT, COSY, HMQC and HMBC). Furthermore, three caffeoylquinic acids (3-CQA, 4-CQA and 5-CQA) were identified by comparison of their spectral data (ESI-MS) with those of known compounds and literature data. Five of these compounds were demonstrated to be substrates for orchard grass PPO.  相似文献   
77.
The host genetic basis of differential outcomes in HIV infection, progression, viral load set point and highly active retroviral therapy (HAART) responses was examined for the common Y haplogroups in European Americans and African Americans. Accelerated progression to acquired immune deficiency syndrome (AIDS) and related death in European Americans among Y chromosome haplogroup I (Y-I) subjects was discovered. Additionally, Y-I haplogroup subjects on HAART took a longer time to HIV-1 viral suppression and were more likely to fail HAART. Both the accelerated progression and longer time to viral suppression results observed in haplogroup Y-I were significant after false-discovery-rate corrections. A higher frequency of AIDS-defining illnesses was also observed in haplogroup Y-I. These effects were independent of the previously identified autosomal AIDS restriction genes. When the Y-I haplogroup subjects were further subdivided into six I subhaplogroups, no one subhaplogroup accounted for the effects on HIV progression, viral load or HAART response. Adjustment of the analyses for population stratification found significant and concordant haplogroup Y-I results. The Y chromosome haplogroup analyses of HIV infection and progression in African Americans were not significant. Our results suggest that one or more loci on the Y chromosome found on haplogroup Y-I have an effect on AIDS progression and treatment responses in European Americans. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
78.
Choline kinase in mice is encoded by two genes, Chka and Chkb. Disruption of murine Chka leads to embryonic lethality, whereas a spontaneously occurring genomic deletion in murine Chkb results in neonatal bone deformity and hindlimb muscular dystrophy. We have investigated the mechanism by which a lack of choline kinase β, encoded by Chkb, causes hindlimb muscular dystrophy. The biosynthesis of phosphatidylcholine (PC) is impaired in the hindlimbs of Chkb−/− mice, with an accumulation of choline and decreased amount of phosphocholine. The activity of CTP:phosphocholine cytidylyltransferase is also decreased in the hindlimb muscle of mutant mice. Concomitantly, the activities of PC phospholipase C and phospholipase A2 are increased. The mitochondria in Chkb−/− mice are abnormally large and exhibit decreased inner membrane potential. Despite the muscular dystrophy in Chkb−/− mice, we observed increased expression of insulin like growth factor 1 and proliferating cell nuclear antigen. However, regeneration of hindlimb muscles of Chkb−/− mice was impaired when challenged with cardiotoxin. Injection of CDP-choline increased PC content of hindlimb muscle and decreased creatine kinase activity in plasma of Chkb−/− mice. We conclude that the hindlimb muscular dystrophy in Chkb−/− mice is due to attenuated PC biosynthesis and enhanced catabolism of PC.  相似文献   
79.
In the visual system, large ensembles of neurons collectively sample visual space with receptive fields (RFs). A puzzling problem is how neural ensembles provide a uniform, high-resolution visual representation in spite of irregularities in the RFs of individual cells. This problem was approached by simultaneously mapping the RFs of hundreds of primate retinal ganglion cells. As observed in previous studies, RFs exhibited irregular shapes that deviated from standard Gaussian models. Surprisingly, these irregularities were coordinated at a fine spatial scale: RFs interlocked with their neighbors, filling in gaps and avoiding large variations in overlap. RF shapes were coordinated with high spatial precision: the observed uniformity was degraded by angular perturbations as small as 15°, and the observed populations sampled visual space with more than 50% of the theoretical ideal uniformity. These results show that the primate retina encodes light with an exquisitely coordinated array of RF shapes, illustrating a higher degree of functional precision in the neural circuitry than previously appreciated.  相似文献   
80.
Alpha4 and beta2 nicotinic acetylcholine (nACh) receptor subunits expressed heterologously in Xenopus oocytes assemble into a mixture of receptors with high and low agonist sensitivity whose relative abundance is influenced by the heteropentamer subunit ratio. We have found that inhibition of protein kinase A by KT5720 decreased maximal [3H]cytisine binding and acetylcholine (ACh)-induced current responses, and increased the relative proportion of alpha4beta2 receptors with high agonist sensitivity. Mutation of serine 467, a putative protein kinase A substrate in a chaperone protein binding motif within the large cytoplasmic domain of the alpha4 subunit, to alanine or asparate decreased or increased, respectively, maximal [3H]cytisine binding and ACh response amplitude. Expression of alpha4S467A mutant subunits decreased steady levels of alpha4 and the relative proportion of alpha4beta2 receptors with low agonist sensitivity, whilst expression of alpha4S467D increased steady levels of alpha4 and alpha4beta2 receptors with low agonist sensitivity. Difopein, an inhibitor of chaperone 14-3-3 proteins, decreased [3H]cytisine binding and ACh responses and increased the proportion of alpha4beta2 with high sensitivity to activation by ACh. Thus, post-translational modification affecting steady-state levels of alpha4 subunits provides a possible means for physiologically relevant, chaperone-mediated variation in the relative proportion of high and low agonist sensitivity alpha4beta2 nACh receptors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号