首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1121篇
  免费   121篇
  2021年   11篇
  2017年   9篇
  2016年   14篇
  2015年   18篇
  2014年   40篇
  2013年   35篇
  2012年   45篇
  2011年   50篇
  2010年   32篇
  2009年   31篇
  2008年   45篇
  2007年   52篇
  2006年   31篇
  2005年   40篇
  2004年   42篇
  2003年   23篇
  2002年   27篇
  2001年   28篇
  2000年   23篇
  1999年   25篇
  1998年   13篇
  1997年   15篇
  1996年   12篇
  1995年   15篇
  1994年   16篇
  1993年   20篇
  1992年   19篇
  1991年   22篇
  1990年   26篇
  1989年   32篇
  1988年   20篇
  1987年   22篇
  1986年   18篇
  1985年   20篇
  1984年   30篇
  1983年   19篇
  1982年   21篇
  1981年   19篇
  1980年   10篇
  1979年   16篇
  1978年   23篇
  1977年   20篇
  1975年   13篇
  1974年   14篇
  1972年   12篇
  1971年   11篇
  1969年   10篇
  1968年   9篇
  1966年   9篇
  1965年   11篇
排序方式: 共有1242条查询结果,搜索用时 15 毫秒
871.
Global warming is predicted to cause substantial habitat rearrangements, with the most severe effects expected to occur in high‐latitude biomes. However, one major uncertainty is whether species will be able to shift their ranges to keep pace with climate‐driven environmental changes. Many recent studies on mammals have shown that past range contractions have been associated with local extinctions rather than survival by habitat tracking. Here, we have used an interdisciplinary approach that combines ancient DNA techniques, coalescent simulations and species distribution modelling, to investigate how two common cold‐adapted bird species, willow and rock ptarmigan (Lagopus lagopus and Lagopus muta), respond to long‐term climate warming. Contrary to previous findings in mammals, we demonstrate a genetic continuity in Europe over the last 20 millennia. Results from back‐casted species distribution models suggest that this continuity may have been facilitated by uninterrupted habitat availability and potentially also the greater dispersal ability of birds. However, our predictions show that in the near future, some isolated regions will have little suitable habitat left, implying a future decrease in local populations at a scale unprecedented since the last glacial maximum.  相似文献   
872.
The emergence of SARS‐CoV‐2 variants has exacerbated the COVID‐19 global health crisis. Thus far, all variants carry mutations in the spike glycoprotein, which is a critical determinant of viral transmission being responsible for attachment, receptor engagement and membrane fusion, and an important target of immunity. Variants frequently bear truncations of flexible loops in the N‐terminal domain (NTD) of spike; the functional importance of these modifications has remained poorly characterised. We demonstrate that NTD deletions are important for efficient entry by the Alpha and Omicron variants and that this correlates with spike stability. Phylogenetic analysis reveals extensive NTD loop length polymorphisms across the sarbecoviruses, setting an evolutionary precedent for loop remodelling. Guided by these analyses, we demonstrate that variations in NTD loop length, alone, are sufficient to modulate virus entry. We propose that variations in NTD loop length act to fine‐tune spike; this may provide a mechanism for SARS‐CoV‐2 to navigate a complex selection landscape encompassing optimisation of essential functionality, immune‐driven antigenic variation and ongoing adaptation to a new host.  相似文献   
873.
Hematopoietic stem cells (HSCs) cultured outside the body are the fundamental component of a wide range of cellular and gene therapies. Recent efforts have achieved > 200‐fold expansion of functional HSCs, but their molecular characterization has not been possible since the majority of cells are non‐HSCs and single cell‐initiated cultures have substantial clone‐to‐clone variability. Using the Fgd5 reporter mouse in combination with the EPCR surface marker, we report exclusive identification of HSCs from non‐HSCs in expansion cultures. By directly linking single‐clone functional transplantation data with single‐clone gene expression profiling, we show that the molecular profile of expanded HSCs is similar to proliferating fetal HSCs and reveals a gene expression signature, including Esam, Prdm16, Fstl1, and Palld, that can identify functional HSCs from multiple cellular states. This “repopulation signature” (RepopSig) also enriches for HSCs in human datasets. Together, these findings demonstrate the power of integrating functional and molecular datasets to better derive meaningful gene signatures and opens the opportunity for a wide range of functional screening and molecular experiments previously not possible due to limited HSC numbers.  相似文献   
874.
875.
876.
877.
878.
879.
880.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号