首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1087篇
  免费   118篇
  2021年   11篇
  2018年   10篇
  2017年   12篇
  2016年   12篇
  2015年   16篇
  2014年   34篇
  2013年   32篇
  2012年   46篇
  2011年   45篇
  2010年   32篇
  2009年   29篇
  2008年   43篇
  2007年   52篇
  2006年   31篇
  2005年   38篇
  2004年   41篇
  2003年   23篇
  2002年   26篇
  2001年   25篇
  2000年   23篇
  1999年   24篇
  1998年   13篇
  1997年   18篇
  1996年   10篇
  1995年   16篇
  1994年   17篇
  1993年   16篇
  1992年   19篇
  1991年   22篇
  1990年   25篇
  1989年   28篇
  1988年   19篇
  1987年   21篇
  1986年   18篇
  1985年   20篇
  1984年   30篇
  1983年   19篇
  1982年   20篇
  1981年   19篇
  1979年   16篇
  1978年   23篇
  1977年   20篇
  1975年   12篇
  1974年   14篇
  1972年   12篇
  1971年   11篇
  1969年   10篇
  1968年   9篇
  1966年   9篇
  1965年   11篇
排序方式: 共有1205条查询结果,搜索用时 109 毫秒
131.
Recognition of genetic structure of populations and the ability to identify vulnerable populations is useful for the formation of conservation management strategies for plants. Eucalyptus grandis is a tall forest tree that has a major area of occurrence in subtropical eastern Australia, with smaller populations located in the east coast tropics. Many widespread forest species exhibit population differentiation that corresponds to geographic regions. However, Eucalyptus grandis appears to be an exception based on isozyme and morphological data. This is intriguing given a large discontinuity between northern populations and those in the southern part of the species range. In this study, the distribution of a maternally inherited chloroplast locus was examined because it was more likely to reveal genetic structure due to the slower evolution of the chloroplast genome and limited dispersal of seed in eucalypts. As expected, the G ST for chloroplast DNA was higher than that for nuclear DNA but indicated low population differentiation for a forest tree species. Phylogeographic analysis indicated that the 15 populations grouped into three broad geographical regions; however, overall population structure was weak suggesting that the large geographical disjunction in the distribution of E. grandis may be relatively recent. A paradigm for conservation management of E. grandis based on chloroplast DNA haplotype distribution would take into account the low differentiation among populations.  相似文献   
132.
Proteomic analysis of the potato tuber life cycle   总被引:1,自引:0,他引:1  
The tuber of potato (Solanum tuberosum) is commonly used as a model for underground storage organs. In this study, changes in the proteome were followed from tuberization, through tuber development and storage into the sprouting phase. Data interrogation using principal component analysis was able to clearly discriminate between the various stages of the tuber life cycle. Moreover, five well-defined protein expression patterns were found by hierarchical clustering. Altogether 150 proteins showing highly significant differences in abundance between specific stages in the life cycle were highlighted; 59 of these were identified. In addition, 50 proteins with smaller changes in abundance were identified, including several novel proteins. Most noticeably, the development process was characterized by the accumulation of the major storage protein patatin isoforms and enzymes involved in disease and defense reactions. Furthermore, enzymes involved in carbohydrate and energy metabolism and protein processing were associated with development but decreased during tuber maturation. These results represent the first comprehensive picture of many proteins involved in the tuber development and physiology.  相似文献   
133.
134.
135.
The T-cell lymphoma invasion and metastasis gene 1 (Tiam1) is a guanine exchange factor (GEF) for the Rho-family GTPase Rac1 that is crucial for the integrity of adherens junctions, tight junctions, and cell-matrix interactions. This GEF contains several protein-protein interaction domains, including a PDZ domain. Earlier studies identified a consensus PDZ-binding motif and a synthetic peptide capable of binding to the Tiam1 PDZ domain, but little is known about its ligand specificity and physiological role in cells. Here, we investigated the structure, specificity, and function of the Tiam1 PDZ domain. We determined the crystal structures of the Tiam1 PDZ domain free and in complex with a “model” peptide, which revealed the structural basis for ligand specificity. Protein database searches using the consensus PDZ-binding motif identified two eukaryotic cell adhesion proteins, Syndecan1 and Caspr4, as potential Tiam1 PDZ domain binding proteins. Equilibrium binding experiments confirmed that C-terminal peptides derived from Syndecan1 and Caspr4 bound the Tiam1 PDZ domain. NMR chemical shift perturbation experiments indicated that the Tiam1 PDZ/Syndecan1 and PDZ/Caspr4 complexes were structurally distinct and identified key residues likely to be responsible for ligand selectivity. Moreover, cell biological analysis established that Syndecan1 is a physiological binding partner of Tiam1 and that the PDZ domain has a function in cell-matrix adhesion and cell migration. Collectively, our data provide insight into the structure, specificity, and function of the Tiam1 PDZ domain. Importantly, our data report on a physiological role for the Tiam1 PDZ domain and establish a novel link between two previously unrelated signal transduction pathways, both of which are implicated in cancer.  相似文献   
136.
Rhodoquinone (RQ) is an important cofactor used in the anaerobic energy metabolism of Rhodospirillum rubrum. RQ is structurally similar to ubiquinone (coenzyme Q or Q), a polyprenylated benzoquinone used in the aerobic respiratory chain. RQ is also found in several eukaryotic species that utilize a fumarate reductase pathway for anaerobic respiration, an important example being the parasitic helminths. RQ is not found in humans or other mammals, and therefore inhibition of its biosynthesis may provide a parasite-specific drug target. In this report, we describe several in vivo feeding experiments with R. rubrum used for the identification of RQ biosynthetic intermediates. Cultures of R. rubrum were grown in the presence of synthetic analogs of ubiquinone and the known Q biosynthetic precursors demethylubiquinone, demethoxyubiquinone, and demethyldemethoxyubiquinone, and assays were monitored for the formation of RQ3. Data from time course experiments and S-adenosyl-l-methionine-dependent O-methyltransferase inhibition studies are discussed. Based on the results presented, we have demonstrated that Q is a required intermediate for the biosynthesis of RQ in R. rubrum.Rhodospirillum rubrum is a well-characterized and metabolically diverse member of the family of purple nonsulfur bacteria (29, 61). R. rubrum is typically found in aquatic environments and can adapt to a variety of growth conditions by using photosynthesis, respiration, or fermentation pathways (28, 70). In the light, R. rubrum exhibits photoheterotrophic growth using organic substrates or photoautotrophic growth using CO2 and H2 (15, 70). In the dark, R. rubrum can utilize either aerobic respiration (70, 73) or anaerobic respiration with a fumarate reduction pathway or with nonfermentable substrates in the presence of oxidants such as dimethyl sulfoxide (DMSO) or trimethylamine oxide (15, 58, 73). R. rubrum can also grow anaerobically in the dark by fermentation of sugars in the presence of bicarbonate (58). The focus of this work was the biosynthesis of quinones used by R. rubrum for aerobic and anaerobic respiration.Rhodoquinone (RQ; compound 1 in Fig. Fig.1)1) is an aminoquinone structurally similar to ubiquinone (coenzyme Q or Q [compound 2]) (44); however, the two differ considerably in redox potential (that of RQ is −63 mV, and that of Q is +100 mV) (2). Both RQ and Q have a fully substituted benzoquinone ring and a polyisoprenoid side chain that varies in length (depending on the species; see Fig. Fig.11 for examples). The only difference between the structures is that RQ has an amino substituent (NH2) instead of a methoxy substituent (OCH3) on the quinone ring. While Q is a ubiquitous lipid component involved in aerobic respiratory electron transport (9, 36, 60), RQ functions in anaerobic respiration in R. rubrum (19) and in several other phototrophic purple bacteria (21, 22, 41) and is also present in a few aerobic chemotrophic bacteria, including Brachymonas denitrificans and Zoogloea ramigera (23). In these varied species of bacteria, RQ has been proposed to function in fumarate reduction to maintain NAD+/NADH redox balance, either during photosynthetic anaerobic metabolism (12, 15-18, 64) or in chemotrophic metabolism when the availability of oxygen as a terminal oxidant is limiting (23). Another recent finding is that RQH2 is capable of inducing Q-cycle bypass reactions in the cytochrome bc1 complex in Saccharomyces cerevisiae, resulting in superoxide formation (7). If RQ/RQH2 coexists in the cytoplasmic membrane with Q/QH2 in R. rubrum, it might serve as both a substrate for and an inhibitor of the bc1 complex (47).Open in a separate windowFIG. 1.Proposed pathways for RQ biosynthesis. The number of isoprene units (n) varies by species (in S. cerevisiae, n = 6; in E. coli, n = 8; in C. elegans, n = 9; in helminth parasites, n = 9 or 10; in R. rubrum, n = 10; in humans, n = 10). RQ is not found in S. cerevisiae, E. coli, or humans. Known Coq (from S. cerevisiae) and Ubi (from E. coli) gene products required for the biosynthesis of ubiquinone (Q, compound 2) are labeled. A polyisoprenyl diphosphate (compound 5) is assembled from dimethylallyl disphosphate (compound 3) and isopentyl diphosphate (compound 4). Coupling of compound 5 with p-hydroxybenzoic acid (compound 6) yields 3-polyprenyl-4-hydroxybenzoic acid (compound 7). The next three steps differ between S. cerevisiae and E. coli. However, they merge at the common intermediate (compound 8), which is oxidized to demethyldemethoxyubiquinone (DDMQn, compound 9). RQ (compound 1) has been proposed to arise from compound 9, demethoxyubiquinone (DMQn; compound 10), demethylubiquinone (DMeQn; compound 11), or compound 2 (by pathway A, B, C, or D). Results presented in this work support pathway D as the favored route for RQ biosynthesis in R. rubrum.RQ is also found in the mitochondrial membrane of eukaryotic species capable of fumarate reduction, such as the flagellate Euglena gracilis (25, 53), the free-living nematode Caenorhabditis elegans (62), and the parasitic helminths (65, 66, 68, 72). Similar to R. rubrum, these species can adapt their metabolism to both aerobic and anaerobic conditions throughout their life cycle. For example, most adult parasitic species (e.g., Ascaris suum, Fasciola hepatica, and Haemonchus contortus) rely heavily on fumarate reduction for their energy generation while inside a host organism, where the oxygen tension is very low (30, 65, 72). Under these conditions, the biosynthesis of RQ is upregulated; however, during free-living stages of their life cycle, the helminth parasites use primarily aerobic respiration, which requires Q (30, 65, 72). The anaerobic energy metabolism of the helminthes has been reviewed (63, 67). Humans and other mammalian hosts use Q for aerobic energy metabolism but do not produce or require RQ; therefore, selective inhibition of RQ biosynthesis may lead to highly specific antihelminthic drugs that do not have a toxic effect on the host (35, 48).R. rubrum is an excellent facultative model system for the study of RQ biosynthesis. The complete genome of R. rubrum has recently been sequenced by the Department of Energy Joint Genome Institute, finished by the Los Alamos Finishing Group, and further validated by optical mapping (57). The 16S rRNA sequence of R. rubrum is highly homologous to cognate eukaryotic mitochondrial sequences (46). Due to the similarities in structure, the biosynthetic pathways of RQ and Q have been proposed to diverge from a common precursor (67). Proposed pathways for RQ biosynthesis (A to D), in conjunction with the known steps in Q biosynthesis, are outlined in Fig. Fig.11 (31, 34, 60). Parson and Rudney previously showed that when R. rubrum was grown anaerobically in the light in the presence of [U-14C]p-hydroxybenzoate, 14C was incorporated into both Q10 and RQ10 (50). In their growth experiments, the specific activity of Q10 was measured at its maximal value 15 h after inoculation and then began to decrease. However, the specific activity of RQ10 continued to increase for 40 h before declining. These results suggested that Q10 was a biosynthetic precursor of RQ10, although this was not directly demonstrated using radiolabeled Q10; hence, the possibility remained that the labeled RQ10 was derived from another radiolabeled lipid species. We have done this feeding experiment with a synthetic analog of Q where n = 3 (Q3) and monitored for the production of RQ3. The synthesis and use of farnesylated quinone and aromatic intermediates for characterization of the Q biosynthetic pathway in S. cerevisiae and Escherichia coli has been well documented (4, 5, 38, 52, 59). The other proposed precursors of RQ shown in Fig. Fig.11 were also fed to R. rubrum, and the lipid extracts from these assays were analyzed for the presence of RQ3, i.e., demethyldemethoxyubiquinone-3 (DDMQ3; compound 9), demethoxyubiquinone-3 (DMQ3; compound 10), and demethylubiquinone-3 (DMeQ3; compound 11).In S. cerevisiae and E. coli, the last O-methylation step in Q biosynthesis is catalyzed by the S-adenosyl-l-methionine (SAM)-dependent methyltransferases Coq3 and UbiG, respectively (26, 52); this final methylation step converts DMeQ to Q. Using the NCBI Basic Local Alignment Search Tool, an O-methyltransferase (GeneID no. 3834724 Rru_A0742) that had 41% and 59% sequence identity with Coq3 and UbiG, respectively, was identified in R. rubrum. S-Adenosyl-l-homocysteine (SAH) is a well-known inhibitor of SAM-dependent methyltransferases (13, 24). Because SAH is the transmethylation by-product of SAM-dependent methyltransferases, it is not readily taken up by cells and must be generated in vivo (24). SAH can be produced in vivo from S-adenosine and l-homocysteine thiolactone by endogenous SAH hydrolase (SAHH) (37, 71). A search of the R. rubrum genome also confirmed the presence of a gene encoding SAHH (GeneID no. 3836896 Rru_A3444). It was proposed that if DMeQ is the immediate precursor of RQ, then SAH inhibition of the methyltransferase required for Q biosynthesis should have little effect on RQ production. Conversely, if Q is required for RQ synthesis, then inhibition of Q biosynthesis should have a significant effect on RQ production. Assays were designed to quantify the levels of RQ3 produced from DMeQ3 and Q3 in R. rubrum cultures at various concentrations of SAH.  相似文献   
137.
138.
The primary in vivo steroidal alkaloid glucosyltransferase from potato   总被引:2,自引:0,他引:2  
To provide tools for breeders to control the steroidal glycoalkaloid (SGA) pathway in potato, we have investigated the steroidal alkaloid glycosyltransferase (Sgt) gene family. The committed step in the SGA pathway is the glycosylation of solanidine by either UDP-glucose or UDP-galactose leading to α-chaconine or α-solanine, respectively. The Sgt2 gene was identified by deduced protein sequence homology to the previously identified Sgt1 gene. SGT1 has glucosyltransferase activity in vitro, but in vivo serves as the UDP-galactose:solanidine galactosyltransferase. Two alleles of the Sgt2 gene were isolated and its function was established with antisense transgenic lines and in vitro assays of recombinant protein. In tubers of transgenic potato (Solanum tuberosum) cvs. Lenape and Desirée expressing an antisense Sgt2 gene construct, accumulation of α-solanine was increased and α-chaconine was reduced. Studies with recombinant SGT2 protein purified from yeast show that SGT2 glycosylation activity is highly specific for UDP-glucose as a sugar donor. This data establishes the function of the gene product (SGT2), as the primary UDP-glucose:solanidine glucosyltransferase in vivo.  相似文献   
139.
The exosporium-defective phenotype of a transposon insertion mutant of Bacillus cereus implicated ExsY, a homologue of B. subtilis cysteine-rich spore coat proteins CotY and CotZ, in assembly of an intact exosporium. Single and double mutants of B. cereus lacking ExsY and its paralogue, CotY, were constructed. The exsY mutant spores are not surrounded by an intact exosporium, though they often carry attached exosporium fragments. In contrast, the cotY mutant spores have an intact exosporium, although its overall shape is altered. The single mutants show altered, but different, spore coat properties. The exsY mutant spore coat is permeable to lysozyme, whereas the cotY mutant spores are less resistant to several organic solvents than is the case for the wild type. The exsY cotY double-mutant spores lack exosporium and have very thin coats that are permeable to lysozyme and are sensitive to chloroform, toluene, and phenol. These spore coat as well as exosporium defects suggest that ExsY and CotY are important to correct formation of both the exosporium and the spore coat in B. cereus. Both ExsY and CotY proteins were detected in Western blots of purified wild-type exosporium, in complexes of high molecular weight, and as monomers. Both exsY and cotY genes are expressed at late stages of sporulation.  相似文献   
140.
We used in vivo (biological), in silico (computational structure prediction), and in vitro (model sequence folding) analyses of single-stranded DNA sequences to show that nucleic acid folding conservation is the selective principle behind a high-frequency single-nucleotide reversion observed in a three-nucleotide mutated motif of the Maize streak virus replication associated protein (Rep) gene. In silico and in vitro studies showed that the three-nucleotide mutation adversely affected Rep nucleic acid folding, and that the single-nucleotide reversion [C(601)A] restored wild-type-like folding. In vivo support came from infecting maize with mutant viruses: those with Rep genes containing nucleotide changes predicted to restore a wild-type-like fold [A(601)/G(601)] preferentially accumulated over those predicted to fold differently [C(601)/T(601)], which frequently reverted to A(601) and displaced the original population. We propose that the selection of native nucleic acid folding is an epigenetic effect, which might have broad implications in the evolution of plants and their viruses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号