首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   730篇
  免费   60篇
  2021年   5篇
  2020年   4篇
  2019年   4篇
  2018年   13篇
  2016年   9篇
  2015年   17篇
  2014年   16篇
  2013年   31篇
  2012年   32篇
  2011年   26篇
  2010年   23篇
  2009年   14篇
  2008年   17篇
  2007年   36篇
  2006年   22篇
  2005年   20篇
  2004年   25篇
  2003年   36篇
  2002年   34篇
  2001年   26篇
  2000年   20篇
  1999年   18篇
  1998年   9篇
  1997年   6篇
  1996年   8篇
  1995年   13篇
  1994年   9篇
  1993年   13篇
  1992年   10篇
  1991年   17篇
  1990年   13篇
  1989年   15篇
  1988年   22篇
  1987年   26篇
  1986年   14篇
  1985年   16篇
  1984年   14篇
  1983年   6篇
  1982年   9篇
  1981年   8篇
  1980年   7篇
  1979年   12篇
  1978年   13篇
  1977年   7篇
  1976年   10篇
  1975年   12篇
  1974年   4篇
  1973年   6篇
  1972年   6篇
  1971年   6篇
排序方式: 共有790条查询结果,搜索用时 15 毫秒
91.
The adult cerebral hemispheres are connected to each other by specialized midline cell types and by three axonal tracts: the corpus callosum, the hippocampal commissure, and the anterior commissure. Many steps are required for these tracts to form, including early patterning and later axon pathfinding steps. Here, the requirement for FGF signaling in forming midline cell types and commissural axon tracts of the cerebral hemispheres is examined. Fgfr1, but not Fgfr3, is found to be essential for establishing all three commissural tracts. In an Fgfr1 mutant, commissural neurons are present and initially project their axons, but these fail to cross the midline that separates the hemispheres. Moreover, midline patterning defects are observed in the mutant. These defects include the loss of the septum and three specialized glial cell types, the indusium griseum glia, midline zipper glia, and glial wedge. Our findings demonstrate that FGF signaling is required for generating telencephalic midline structures, in particular septal and glial cell types and all three cerebral commissures. In addition, analysis of the Fgfr1 heterozygous mutant, in which midline patterning is normal but commissural defects still occur, suggests that at least two distinct FGF-dependent mechanisms underlie the formation of the cerebral commissures.  相似文献   
92.
A novel co-regulation exists between the first step of GPI (glycosylphosphatidylinositol) anchor biosynthesis and the rate-determining step of ergosterol biosynthesis in Candida albicans. Depleting CaGpi19p, an accessory subunit of the enzyme complex that initiates GPI biosynthesis, down-regulates ERG11, altering ergosterol levels and drug response. This effect is specific to CaGpi19p depletion and is not due to cell wall defects or GPI deficiency. Additionally, down-regulation of ERG11 down-regulates CaGPI19 and GPI biosynthesis.  相似文献   
93.
94.
The desert cyanobacterium Anabaena variabilis produces an exopolymer during the stationary growth phase in batch culture. Optimal polymer production was observed at pH?10 under phosphorus limitation. Chemical analysis showed it to be composed of 49% carbohydrate and 19% protein. Monosaccharide analysis revealed a heteropolysaccharidic nature with glucose, mannose, and galactose as the main neutral sugars. Infrared (IR) spectrum of the exopolymer showed absorption bands at 1,645 and 1,421?cm?1 characteristic of C=O in the carboxylate group. Strong band was observed at 1,072?cm?1 due to C–O–C or C–O–P stretching vibrations. A band at 2,363?cm?1 corresponding to C–H stretch of protein was also observed. IR spectrum suggested that the exopolymer is nonsulfated. Rheological properties of the polymer showed marked shear thinning non-Newtonian behavior in the concentration range of 0.1–0.4%. However, it appeared to undergo change in the internal structure on shearing thereby exhibiting thixotropic behavior. The polymer possessed 75% flocculating ability vis a vis alum, 71% emulsification of hexadecane, and good thermal stability making it a potent candidate for multiple industrial applications. The exopolymer bound 156?g H2O g?1 and exhibited antibacterial activity against Staphylococcus aureus suggesting a potential for application in wound management as well.  相似文献   
95.
In complexity, the mammalian nasal fossa is unparalleled among vertebrates. Although total nasal epithelial surface areas (SA) have been reported for numerous mammals, detailed quantitative reports on individual structures exist for few mammals. Here, we examine mucosal distribution in the nasal fossa of the greater false vampire bat, Megaderma lyra (Megadermatidae, Chiropera). The SA of the left nasal fossa of one adult Megaderma was measured in serial histological sections; the development of the nasal fossa was assessed using three fetal specimens. The nasal fossa of Megaderma has seven ethmoturbinals and multiple smaller interturbinals between them, all bearing olfactory mucosa. Nearly half of the total olfactory SA of the nasal fossa lines these turbinals; the remainder lines recesses and parts of the medial (septal) and lateral walls of the nasal fossa. The maxilloturbinal is diminutive, and the nasoturbinal is absent. Volumetric measurements of the fetal and adult vomeronasal organ suggest age-related reduction. Thirty-five percent of the nasal fossa is lined with olfactory mucosa, within the range reported previously for chiropterans. In Megaderma the frontal recess contributes little to total nasal SA (2% of all olfactory SA). This represents a significant departure in morphology compared to other mammals, including some bats, in which the frontal recess is much larger. The significance of the emphasis in olfactory SA distribution to central or more peripheral (paranasal) spaces could be investigated using a large sample of phylogenetically diverse mammals, such as bats. This study emphasizes the need for more histological detail to further such studies.  相似文献   
96.
NK cells are pivotal sentinels of the innate immune system and distinct subpopulations in peripheral blood have been described. A number of studies addressed HIV-induced alterations of NK cell phenotype and functionality mainly focusing on CD56dimCD16+ and CD56CD16+ NK cells. However, the impact of HIV-infection on CD56bright NK cells is less well understood. Here we report a rise of CD56bright NK cells in HIV-infected individuals, which lack CCR7-expression and strongly correlate with HIV viral load. CCR7CD56bright NK cells were characterized by increased cytolytic potential, higher activation states and a more differentiated phenotype. These cells thus acquired a number of features of CD56dimCD16+ NK cells. Furthermore, CD56bright NK cells from HIV patients exhibited higher degranulation levels compared to uninfected individuals. Thus, chronic HIV-infection is associated with a phenotypic and functional shift of CD56bright NK cells, which provides a novel aspect of HIV-associated pathogenesis within the NK cell compartment.  相似文献   
97.
The metabolomic approach has been widely used in toxicology to investigate mechanisms of toxicity. To understand the mammalian system??s response to nickel exposure, we analysed the NiCl2 induced metabolomic changes in urine of rats using 1H nuclear magnetic resonance (1H NMR) spectroscopy together with clinically relevant biochemical parameters. Male Sprague?CDawley rats were administered intraperitoneally with NiCl2 at doses of 4, 10 and 20?mg/kg body weight. Urine samples were collected at 8, 16, 24, 72, 96 and 120?h post treatment. The metabolomic profile of rat urine showed prominent changes in citrate, dimethylamine, creatinine, choline, trimethylamine oxide (TMAO), phenyl alanine and hippurate at all doses. Principal component analysis of urine 1H NMR spectra demonstrated the dose and time dependent development of toxicity. The metabolomic time trajectory, based on pattern recognition analysis of 1H NMR spectra of urine, illustrated clear separation of pre and post treatments (temporal). Only animals treated with a low dose of NiCl2 returned to normal physiology. The 1H NMR spectral data correlated well with the clinically relevant nephrotoxic biomarkers. The urinary metabolomic phenotyping for NiCl2 induced nephrotoxicity was defined according to the predictive ability of the known metabolite biomarkers, creatinine, citrate and TMAO. The current approach demonstrates that metabolomics, one of the most important platform in system biology, may be a promising tool for identifying and characterizing biochemical responses to toxicity.  相似文献   
98.
ABSTRACT: BACKGROUND: Chikungunya (CHIK) is currently endemic in South and Central India and exist as co-infections with dengue in Northern India. In 2010, New Delhi witnessed an outbreak of CHIK in the months October-December. This was the first incidence of a dominant CHIK outbreak in Delhi and prompted us to characterize the Delhi virus strains. We have also investigated the evolution of CHIK spread in India. FINDINGS: Clinical samples were subjected to RT-PCR to detect CHIK viral RNA. The PCR amplified products were sequenced and the resulting sequences were genetically analyzed. Phylogenetic analysis based on partial sequences of the structural proteins E1 and E2 revealed that the viruses in the latest outbreak exhibited ECSA lineage. Two novel mutations, E1 K211E and E2 V264A were observed in all Delhi isolates. In addition, CHIKV sequences from eight states in India were analyzed along with Delhi sequences to map the genetic diversity of CHIKV within the country. Estimates of average evolutionary divergence within states showed varying divergence among the sequences both within the states and between the states. We identified distinct molecular signatures of the different genotypes of CHIKV revealing emergence of a new signature in the New Delhi clade. Statistical analyses and construction of evolutionary path of the virus within the country revealed gradual spread of one specific strain all over the country. CONCLUSION: This study has identified unique mutations in the E1 and E2 genes and has revealed the presence of ancestral CHIKV population with maximum diversity circulating in Maharashtra. The study has further revealed the trend of CHIK spread in India since its first report in 1963 and its subsequent reappearance in 2005.  相似文献   
99.
The ability of the distal lung epithelia to actively transport Na+, with Cl- and water following, from the alveolar spaces inversely correlates with morbidity and mortality of infants, children, and adults with alveolar pulmonary edema. It is now recognized, in contrast to many other Na+ transporting epithelia, that at least half of this active transport is not sensitive to amiloride, which inhibits the epithelial Na+ channel. This paper reviews amiloride-insensitive Na+ and fluid transport in the mammalian distal lung unit under basal conditions and speculates on potential explanations for this amiloride-insensitive transport. It also provides new information, using primary cultures of rat fetal distal lung epithelia and alveolar type II cells grown under submersion and air-liquid interface culture conditions, regarding putative blockers of this transport.  相似文献   
100.
Xenorhabdus nematophila secretes insecticidal proteins to kill its larval prey. We have isolated an approximately 58-kDa GroEL homolog, secreted in the culture medium through outer membrane vesicles. The protein was orally insecticidal to the major crop pest Helicoverpa armigera with an LC50 of approximately 3.6 microg/g diet. For optimal insecticidal activity all three domains of the protein, apical, intermediate, and equatorial, were necessary. The apical domain alone was able to bind to the larval gut membranes and manifest low level insecticidal activity. At equimolar concentrations, the apical domain contained approximately one-third and the apical-intermediate domain approximately one-half bioactivity of that of the full-length protein. Interaction of the protein with the larval gut membrane was specifically inhibited by N-acetylglucosamine and chito-oligosaccharides. Treatment of the larval gut membranes with chitinase abolished protein binding. Based on the three-dimensional structural model, mutational analysis demonstrated that surface-exposed residues Thr-347 and Ser-356 in the apical domain were crucial for both binding to the gut epithelium and insecticidal activity. Double mutant T347A,S356A was 80% less toxic (p < 0.001) than the wild type protein. The GroEL homolog showed alpha-chitin binding activity with Kd approximately 0.64 microm and Bmax approximately 4.68 micromol/g chitin. The variation in chitin binding activity of the mutant proteins was in good agreement with membrane binding characteristics and insecticidal activity. The less toxic double mutant XnGroEL showed an approximately 8-fold increase of Kd in chitin binding assay. Our results demonstrate that X. nematophila secretes an insecticidal GroEL protein with chitin binding activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号