首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3746篇
  免费   271篇
  国内免费   288篇
  4305篇
  2024年   7篇
  2023年   52篇
  2022年   128篇
  2021年   205篇
  2020年   125篇
  2019年   154篇
  2018年   157篇
  2017年   103篇
  2016年   150篇
  2015年   244篇
  2014年   246篇
  2013年   302篇
  2012年   347篇
  2011年   286篇
  2010年   157篇
  2009年   187篇
  2008年   226篇
  2007年   191篇
  2006年   152篇
  2005年   126篇
  2004年   119篇
  2003年   104篇
  2002年   86篇
  2001年   68篇
  2000年   60篇
  1999年   59篇
  1998年   31篇
  1997年   39篇
  1996年   19篇
  1995年   25篇
  1994年   18篇
  1993年   18篇
  1992年   19篇
  1991年   10篇
  1990年   18篇
  1989年   11篇
  1988年   16篇
  1987年   7篇
  1986年   8篇
  1985年   7篇
  1984年   5篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1974年   1篇
  1969年   1篇
  1949年   1篇
  1948年   1篇
排序方式: 共有4305条查询结果,搜索用时 0 毫秒
71.
Mixture toxicity is an important issue for the risk assessment of environmental pollutants, for which an extensive amount of data are necessary in evaluating their potential adverse health effects. However, it is very hard to decipher the interaction between compounds due to limited techniques. Contamination of heavy metals and organophosphoric insecticides under the environmental and biological settings poses substantial health risk to humans. Although previous studies demonstrated the co-occurrence of cadmium (Cd) and chlorpyrifos (CPF) in environmental medium and food chains, their interaction and potentially synergistic toxicity remain elusive thus far. Here we integrated the approaches of thin-layer chromatography and 1H NMR to study the interaction between Cd2+ and CPF in inducing hepatoxicity. A novel interaction was identified between Cd2+ and CPF, which might be the bonding between Cd2+ and nitrogen atom in the pyridine ring of CPF, or the chelation formation between one Cd2+ and two CPF molecules. The Cd-CPF complex was conferred with distinct biological fate and toxicological performances from its parental components. We further demonstrated that the joint hepatoxicity of Cd ion and CPF was chiefly due to the Cd-CPF complex-facilitated intracellular transport associated with oxidative stress.  相似文献   
72.
Li  Kun  Wang  Yongzhang  Qu  Haiyong 《Plant molecular biology》2020,102(3):287-306
Plant Molecular Biology - At the early stage of pollination, the difference in gene expression between compatibility and incompatibility is highly significant about the pollen-specific expression...  相似文献   
73.
The significance of actin-related protein 2/3 complex subunit 4 (ARPC4) expression in bladder cancer, and its potential role in the invasion and migration of bladder cancer cells, has yet to be determined. This study was to identify the correlation between ARPC4 and lymph node metastasis, and to determine the role of ARPC4 in the invasive migration of T24 bladder cancer cells. One hundred and ninety-eight bladder cancer tissues and 40 normal bladder and lymph node tissues were examined. Tissue microarrays were constructed and subjected to immunohistochemical stating for ARPC4. Multiple logistic analysis was used to determine risk factors associated with bladder cancer metastasis. ARPC4 expression in T24 bladder cancer cells was suppressed using small interfering RNA and changes in protein levels were determined by Western blot analysis. The proliferation of bladder cancer cells after knocking down of ARPC4 was determined by cell counting kit-8. The effects of ARPC4 knockdown on T24 cell invasion and migration was determined using transwell and wound healing assays. Immunofluorescence analysis was performed to examine changes in pseudopodia formation and actin cytoskeleton structure. The expression of ARPC4 was elevated in bladder cancer tissues than normal tissues (84.3% vs 27.5%, P < 0.001). The multivariate logistic analysis demonstrated that the level of ARPC4, as a risk factor, was correlated with lymphatic metastasis (P < 0.05). ARPC4 knockdown attenuated proliferation, migration, invasion, and pseudopodia formation in T24 cells. ARPC4 expression, as a risk factor, is associated with lymphatic metastasis and is upregulated in bladder cancer tissues in comparison with normal tissues. Inhibition of ARPC4 expression significantly attenuates the proliferation, migration, and invasion of bladder cancer cell, possibly due to defects in pseudopodia formation.  相似文献   
74.
Li  Zhibin  Hua  Zetian  Dong  Li  Zhu  Wei  He  Guangsheng  Qu  Lijun  Qi  Na  Xu  Zhengjin  Wang  Fang 《Journal of Plant Growth Regulation》2020,39(1):60-71
Journal of Plant Growth Regulation - RAD-seq method is a recently developed, cost-effective, and high-throughput approach for detecting genetic variability based on single-nucleotide polymorphisms...  相似文献   
75.
Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer death worldwide. As a platinum-based chemotherapeutic drug, cisplatin has been used for over 30 years in NSCLC treatment while its effects are diminished by drug resistance. Therefore, we aimed to study the potential role of UCA1 in the development of chemoresistance against cisplatin. Real-time polymerase chain reaction, western-blot analysis, and immunofluorescence were used to study the involvement of UCA1, miR-495, and NRF2 in chemoresistance against cisplatin. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to determine the effect of cisplatin on cell proliferation. Computational analysis and luciferase assay were carried out to explore the interaction among UCA1, miR-495, and NRF2. The cisplatin-R group exhibited lower levels of UCA1 and NRF2 expression but a higher level of miR-495 expression than the cisplatin-S group. The growth rate and half-maximal inhibitory concentration of cellular dipeptidyl peptidase (cisplatinum) of the cisplatin-R group were much higher than those in the cisplatin-S group. MiR-495 contained a complementary binding site of UCA1, and the luciferase activity of wild-type UCA1 was significantly reduced after the transfection of miR-495 mimics. MiR-495 directly targeted the 3′-untranslated region (3′-UTR) of NRF2, and the luciferase activity of wild-type NRF2 3′-UTR was evidently inhibited by miR-495 mimics. Finally, UCA1 and NRF2 expressions in the effective group were much lower than that in the ineffective group, along with a much higher level of miR-495 expression. We suggested for the first time that high expression of UCA1 contributed to the development of chemoresistance to cisplatin through the UCA1/miR-495/NRF2 signaling pathway.  相似文献   
76.
The human cardiovascular system has adapted to function optimally in Earth''s 1G gravity, and microgravity conditions cause myocardial abnormalities, including atrophy and dysfunction. However, the underlying mechanisms linking microgravity and cardiac anomalies are incompletely understood. In this study, we investigated whether and how calpain activation promotes myocardial abnormalities under simulated microgravity conditions. Simulated microgravity was induced by tail suspension in mice with cardiomyocyte-specific deletion of Capns1, which disrupts activity and stability of calpain-1 and calpain-2, and their WT littermates. Tail suspension time-dependently reduced cardiomyocyte size, heart weight, and myocardial function in WT mice, and these changes were accompanied by calpain activation, NADPH oxidase activation, and oxidative stress in heart tissues. The effects of tail suspension were attenuated by deletion of Capns1. Notably, the protective effects of Capns1 deletion were associated with the prevention of phosphorylation of Ser-345 on p47phox and attenuation of ERK1/2 and p38 activation in hearts of tail-suspended mice. Using a rotary cell culture system, we simulated microgravity in cultured neonatal mouse cardiomyocytes and observed decreased total protein/DNA ratio and induced calpain activation, phosphorylation of Ser-345 on p47phox, and activation of ERK1/2 and p38, all of which were prevented by calpain inhibitor-III. Furthermore, inhibition of ERK1/2 or p38 attenuated phosphorylation of Ser-345 on p47phox in cardiomyocytes under simulated microgravity. This study demonstrates for the first time that calpain promotes NADPH oxidase activation and myocardial abnormalities under microgravity by facilitating p47phox phosphorylation via ERK1/2 and p38 pathways. Thus, calpain inhibition may be an effective therapeutic approach to reduce microgravity-induced myocardial abnormalities.  相似文献   
77.
The stress-responding protein, GADD45α, plays important roles in cell cycle checkpoint, DNA repair and apoptosis. In our recent study, we demonstrate that GADD45α undergoes a dynamic ubiquitination and degradation in vivo, which process can be blocked by the cytotoxic reagent, arsenite, resulting in GADD45α accumulation to activate JNKs cell death pathway, thereby revealing a novel mechanism for the cellular GADD45α functional regulation. But the factors involved in GADD45α stability modulations are unidentified. Here, we demonstrated that MDM2 was an E3 ubiquitin ligase for GADD45α. One of MDM2-binding partner, ribosomal protein S7, interacted with and stabilized GADD45α through preventing the ubiquitination and degradation of GADD45α mediated by MDM2. This novel function of S7 is unrelated to p53 but seems to depend on S7/MDM2 interaction, for the S7 mutant lacking MDM2-binding ability lost its function to stabilize GADD45α. Further investigations indicated that arsenite treatment enhanced S7–MDM2 interaction, resulting in attenuation of MDM2-dependent GADD45α ubiquitination and degradation, thereby leading to GADD45α-dependent cell death pathway activation. Silencing S7 expression suppressed GADD45α-dependent cytotoxicity induced by arsenite. Our findings thus identify a novel function of S7 in control of GADD45α stabilization under both basal and stress conditions and its significance in mediating arsenite-induced cellular stress.  相似文献   
78.
79.
80.
Myopia is a refractive error of the eye that is prevalent worldwide. The most extreme form, high myopia, is usually associated with other ocular disorders such as retinal detachment, macular degeneration, cataract, and glaucoma, and is one of leading causes of blindness. The etiology is complex and has not been fully elucidated. In this study, we identified a novel missense variant of the CCDC111 gene (NM_152683.2: c.265T > G; p.Y89D) in a high myopia family by exome sequencing. The variant was identified in 4 patients from an additional 270 sporadic high myopia patients, but not found in 270 controls. The amino acid is highly conserved across species, and variants giving rise to amino acid substitutions are predicted to be functionally damaging. The CCDC111 gene was ubiquitously expressed in primary cell cultures from human eye tissue, including corneal epithelial cells, choroidal melanoma cells, scleral fibroblasts, retinal epithelial cells, retinal Müller cells, and lens capsule epithelial cells. In summary, our results suggested that the CCDC111 may be a susceptibility gene for high myopia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号