首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1967篇
  免费   149篇
  国内免费   196篇
  2024年   2篇
  2023年   21篇
  2022年   73篇
  2021年   134篇
  2020年   83篇
  2019年   111篇
  2018年   110篇
  2017年   63篇
  2016年   92篇
  2015年   104篇
  2014年   154篇
  2013年   160篇
  2012年   169篇
  2011年   161篇
  2010年   94篇
  2009年   82篇
  2008年   102篇
  2007年   72篇
  2006年   55篇
  2005年   58篇
  2004年   48篇
  2003年   53篇
  2002年   40篇
  2001年   22篇
  2000年   19篇
  1999年   35篇
  1998年   18篇
  1997年   22篇
  1996年   20篇
  1995年   14篇
  1994年   18篇
  1993年   8篇
  1992年   10篇
  1991年   21篇
  1990年   11篇
  1989年   11篇
  1988年   7篇
  1987年   6篇
  1986年   6篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1982年   4篇
  1981年   1篇
  1980年   3篇
  1978年   2篇
  1973年   1篇
  1965年   1篇
排序方式: 共有2312条查询结果,搜索用时 179 毫秒
81.
A major hallmark of mutant superoxide dismutase (SOD1)‐linked familial amyotrophic lateral sclerosis is SOD1‐immunopositive inclusions found within motor neurons. The mechanism by which SOD1 becomes aggregated, however, remains unclear. In this study, we aimed to investigate the role of nitrosative stress and S‐nitrosylation of protein disulfide isomerase (PDI) in the formation of SOD1 aggregates. Our data show that with disease progression inducible nitric oxide synthase (iNOS) was up‐regulated, which generated high levels of nitric oxide (NO) and subsequently induced S‐nitrosylation of PDI in the spinal cord of mutant SOD1 transgenic mice. This was further confirmed by in vitro observation that treating SH‐SY5Y cells with NO donor S‐nitrosocysteine triggered a dose‐dependent formation of S‐nitrosylated PDI. When mutant SOD1 was over‐expressed in SH‐SY5Y cells, the iNOS expression was up‐regulated, and NO generation was consequently increased. Furthermore, both S‐nitrosylation of PDI and the formation of mutant SOD1 aggregates were detected in the cells expressing mutant SOD1G93A. Blocking NO generation with the NOS inhibitor N‐nitro‐l ‐arginine attenuated the S‐nitrosylation of PDI and inhibited the formation of mutant SOD1 aggregates. We conclude that NO‐mediated S‐nitrosylation of PDI is a contributing factor to the accumulation of mutant SOD1 aggregates in amyotrophic lateral sclerosis.  相似文献   
82.
83.
Phanerochaete chrysosporium has been identified as an effective bioremediation agent for its biosorption and degradation ability. However, the applications of P. chrysosporium are limited owing to its long degradation time and low resistance to pollutants. In this research, nitrogen-doped TiO2 nanoparticles were loaded on P. chrysosporium to improve the remediation capacity for pollutants. The removal efficiencies were maintained at a high level: 84.2 % for Cd(II) and 78.9 % for 2,4-dichlorophenol (2,4-DCP) in the wide pH range of 4.0 to 7.0 in 60 h. The removal capacity of immobilized P. chrysosporium loaded with nitrogen-doped TiO2 nanoparticles (PTNs) was strongly affected by the initial Cd(II) and 2,4-DCP concentrations. The hyphae of PTNs became tight, and a large amount of crystals adhered to them after the reaction. Fourier transform infrared spectroscopy showed that carboxyl, amino, and hydroxyl groups on the surface of PTNs were responsible for the biosorption. In the degradation process, 2,4-DCP was broken down into o-chlorotoluene and 4-hexene-1-ol. These results showed that PTNs is promising for simultaneous removal of Cd(II) and 2,4-DCP from wastewater.  相似文献   
84.
85.
Seed rain is a crucial element in vegetation regeneration, but has been rarely studied in high altitude regions, particularly degraded Kobresia meadow. Weed infestation is a distinctive feature of pasture degradation in Kobresia meadows on the Tibetan plateau, the ecological mechanism of which is closely related with vegetation’s seed rain. In this paper we assess the effect of vegetation degradation on seed rain and consider its implication for restoration of degraded Kobresia meadows in the headwater area of Yellow river, through analysis of seed species composition, number of seeds landing per m2 of soil surface, and their relationship with above ground vegetation. Vegetation degradation had an impact on the species composition and numbers of seeds in seed rain and their relationship with above-ground vegetation. Within the un-degraded meadow, which provided a closed vegetation cover, 35 % of the seed rain was of sedge and gramineae species. However, within the degraded meadows, as the extent of degradation increased, so the total number of seeds m?2 increased, with those derived from sedge and gramineae species forming a declining proportion of the total. Degradation of Kobresia meadow on the Tibetan plateau is exacerbated by the seed input of weed species (such as Oxytropis ochrocephala, Carum carvi, Aconitum pendulum, Pedicularis kansuensis in this study). Therefore, a major priority for the restoration of such degraded meadows should be the elimination of these weeds from the above ground vegetation by human intervention.  相似文献   
86.
3, 5-Diiodothyronine (T2), a natural metabolite of triiodothyronine (T3) from deiodination pathway, can mimic biologic effects of T3 without inducing thyrotoxic effects. Recent studies revealed T3 acted as a protective factor against diabetic nephropathy (DN). Nevertheless, little is known about the effect of T2 on DN. This study was designed to investigate whether and how T2 affects experimental models of DN in vivo and in vitro. Administration of T2 was found to prevent significant decrease in SIRT1 protein expression and activity as well as increases in blood glucose, urine albumin excretion, matrix expansion, transforming growth factor-β1 expression, fibronectin and type IV collagen deposition in the diabetic kidney. Concordantly, similar effects of T2 were exhibited in the cultured rat mesangial cells (RMC) exposed to high glucose and that could be abolished by a known SIRT1 inhibitor, sirtinol. Moreover, enhanced NF-κB acetylation and JNK phosphorylation present in both diabetic rats and high glucose-treated RMC were distinctly dampened by T2. Collectively, these results suggested that T2 was a protective agent against renal damage in diabetic nephropathy, whose action involved regulation of SIRT1.  相似文献   
87.
Accumulating evidence indicates that cancer-initiating cells (CICs) are responsible for cancer initiation, relapse, and metastasis. Colorectal carcinoma (CRC) is typically classified into proximal colon, distal colon, and rectal cancer. The gradual changes in CRC molecular features within the bowel may have considerable implications in colon and rectal CICs. Unfortunately, limited information is available on CICs derived from rectal cancer, although colon CICs have been described. Here we identified rectal CICs (R-CICs) that possess differentiation potential in tumors derived from patients with rectal adenocarcinoma. The R-CICs carried both CD44 and CD54 surface markers, while R-CICs and their immediate progenies carried potential epithelial–mesenchymal transition characteristics. These R-CICs generated tumors similar to their tumor of origin when injected into immunodeficient mice, differentiated into rectal epithelial cells in vitro, and were capable of self-renewal both in vitro and in vivo. More importantly, subpopulations of R-CICs resisted both 5-fluorouracil/calcium folinate/oxaliplatin (FolFox) and cetuximab treatment, which are the most common therapeutic regimens used for patients with advanced or metastatic rectal cancer. Thus, the identification, expansion, and properties of R-CICs provide an ideal cellular model to further investigate tumor progression and determine therapeutic resistance in these patients.  相似文献   
88.
The clinical use of pluripotent stem cell (PSC)‐derived neural cells requires an efficient differentiation process for mass production in a bioreactor. Toward this goal, neural differentiation of murine embryonic stem cells (ESCs) in three‐dimensional (3D) polyethylene terephthalate microfibrous matrices was investigated in this study. To streamline the process and provide a platform for process integration, the neural differentiation of ESCs was induced with astrocyte‐conditioned medium without the formation of embryoid bodies, starting from undifferentiated ESC aggregates expanded in a suspension bioreactor. The 3D neural differentiation was able to generate a complex neural network in the matrices. When compared to 2D differentiation, 3D differentiation in microfibrous matrices resulted in a higher percentage of nestin‐positive cells (68% vs. 54%) and upregulated gene expressions of nestin, Nurr1, and tyrosine hydroxylase. High purity of neural differentiation in 3D microfibrous matrix was also demonstrated in a spinner bioreactor with 74% nestin + cells. This study demonstrated the feasibility of a scalable process based on 3D differentiation in microfibrous matrices for the production of ESC‐derived neural cells. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1013–1022, 2013  相似文献   
89.
In modeling individuals vaccination decision making, existing studies have typically used the payoff-based (e.g., game-theoretical) approaches that evaluate the risks and benefits of vaccination. In reality, whether an individual takes vaccine or not is also influenced by the decisions of others, i.e., due to the impact of social influence. In this regard, we present a dual-perspective view on individuals decision making that incorporates both the cost analysis of vaccination and the impact of social influence. In doing so, we consider a group of individuals making their vaccination decisions by both minimizing the associated costs and evaluating the decisions of others. We apply social impact theory (SIT) to characterize the impact of social influence with respect to individuals interaction relationships. By doing so, we propose a novel modeling framework that integrates an extended SIT-based characterization of social influence with a game-theoretical analysis of cost minimization. We consider the scenario of voluntary vaccination against an influenza-like disease through a series of simulations. We investigate the steady state of individuals’ decision making, and thus, assess the impact of social influence by evaluating the coverage of vaccination for infectious diseases control. Our simulation results suggest that individuals high conformity to social influence will increase the vaccination coverage if the cost of vaccination is low, and conversely, will decrease it if the cost is high. Interestingly, if individuals are social followers, the resulting vaccination coverage would converge to a certain level, depending on individuals’ initial level of vaccination willingness rather than the associated costs. We conclude that social influence will have an impact on the control of an infectious disease as they can affect the vaccination coverage. In this respect, our work can provide a means for modeling the impact of social influence as well as for estimating the effectiveness of a voluntary vaccination program.  相似文献   
90.

Objective:

A spontaneous deletion in the nicotinamide nucleotide transhydrogenase (Nnt) gene eliminating exons 7‐11 in C57BL/6J (B6J) mice is associated with reduced glucose‐stimulated insulin secretion in vitro, impaired glucose tolerance, higher epigonadal fat mass, and altered susceptibility to diet induced obesity of male B6J mice was proposed. A potential implication for NNT in human adipose tissue distribution has not been investigated so far.

Design and Methods:

Therefore, NNT mRNA expression in paired human samples of visceral (vis) and subcutaneous (sc) adipose tissue from 221 subjects with a wide range of body mass index (BMI), insulin sensitivity, and glucose tolerance was analyzed.

Results:

NNT mRNA expression is significantly higher in visceral fat of obese patients and correlates with body weight, BMI, % body fat, visceral and sc fat area, waist and hip circumference, and fasting plasma insulin (FPI). Multivariate linear regression analysis revealed visceral NNT expression as age and gender independent predictor of BMI, waist circumference, visceral fat area, and % body fat, but not FPI and 2 h OGTT glucose.

Conclusion:

In conclusion, a functional relevance of NNT in the development of human obesity and visceral fat distribution was suggested here.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号