首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4513篇
  免费   377篇
  国内免费   426篇
  2024年   11篇
  2023年   67篇
  2022年   155篇
  2021年   224篇
  2020年   160篇
  2019年   250篇
  2018年   203篇
  2017年   151篇
  2016年   182篇
  2015年   297篇
  2014年   339篇
  2013年   340篇
  2012年   422篇
  2011年   438篇
  2010年   238篇
  2009年   189篇
  2008年   215篇
  2007年   207篇
  2006年   190篇
  2005年   156篇
  2004年   125篇
  2003年   108篇
  2002年   88篇
  2001年   78篇
  2000年   45篇
  1999年   57篇
  1998年   42篇
  1997年   45篇
  1996年   45篇
  1995年   29篇
  1994年   36篇
  1993年   17篇
  1992年   27篇
  1991年   22篇
  1990年   16篇
  1989年   12篇
  1988年   11篇
  1987年   14篇
  1986年   7篇
  1985年   19篇
  1983年   2篇
  1980年   2篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1972年   6篇
  1971年   5篇
  1970年   2篇
  1967年   2篇
排序方式: 共有5316条查询结果,搜索用时 15 毫秒
931.
Defence reactions occurring in resistant (cv. Gankezaomi) and susceptible (cv. Ganmibao) muskmelon leaves were investigated after inoculating with Colletotrichum lagenarium. Lesion restriction in resistant cultivars was associated with the accumulation of hydrogen peroxide (H2O2). The activity of antioxidants catalase (CAT) and peroxidase (POD) significantly increased in both cultivars after inoculation, while levels of both CAT and POD activity were significantly higher in the resistant cultivar. Ascorbate peroxidase (APX) increased in both cultivars after inoculation, and level of APX activity was significantly higher in the resistant cultivar. Glutathione reductase (GR) activity significantly increased in both cultivars following inoculation, but was higher in the resistant cultivar, resulting in higher levels of ascorbic acid (AsA) and reduced glutathione (GSH). Phenylalanine ammonia lyase (PAL) significantly increased in inoculated leaves of both cultivars, resulting in higher levels of total phenolic compounds and flavonoids. The pathogenesis‐related proteins chitinase (CHT) and β‐1, 3‐glucanase (GLU) significantly increased following inoculation with higher activity in the resistant cultivar. These findings show that resistance of muskmelon plants against C. lagenarium is associated with the rapid accumulation of H2O2, resulting in altered cellular redox status, accumulation of pathogenesis‐related proteins, activation of phenylpropanoid pathway to accumulation of phenolic compounds and flavonoids.  相似文献   
932.

Purpose

This paper aims to sort the literatures on life cycle assessments (LCA) by their respective importance through citation and co-citation analysis and to further discuss the strengths and weaknesses of these kinds of scientometric methods in the case of LCA research.

Methods

CiteSpace II was used to generate document co-citation networks based on 3,824 articles retrieved from the ISI Web of Science database on this topic.

Results

Table 1 provides the top 50 highest cited documents in the LCA field. Here, we use two indicators, i.e., citation frequency in citation analysis and betweenness centrality metric in co-citation analysis, to measure the importance of these LCA literatures.

Conclusions

Citation and co-citation analysis are useful for environmental scientists and engineers to get a better understanding of the inner structure of LCA research. However, like all other research methods, this kind of analysis has some limitations. On the one hand, Scientometric studies and related software are very dependent on ISI Web of Science database, but considering the ISI Web of Science only began to track the LCA field fairly recently, the Scopus database would probably give a fuller picture. On the other hand, since the essence of scientometrics analysis is outsiders commenting insiders, so with only citation and co-citation analysis, to our understanding of the past, present, and future of LCA field, is insufficient.  相似文献   
933.
934.

Background

Biphasic effects on cell proliferation of bisphenol A (BPA) can occur at lesser or greater exposures. Sertoli cells play a pivotal role in supporting proliferation and differentiation of germ cells. The mechanisms responsible for inverse effects of great and low concentrations of BPA on Sertoli cell proliferation need further study.

Methods

We utilized proteomic study to indentify the protein expression changes of Sertoli TM4 cells treated with 10− 8 M and 10− 5 M BPA. The further mechanisms related to mitochondria, energy metabolism and oxidative stress were investigated by qRT-PCR and Western-blotting analysis.

Results

Proteomic studies identified 36 proteins and two major clusters of proteins including energy metabolism and oxidative stress expressed with opposite changes in Sertoli cells treated with 10− 8 M and 10− 5 M BPA, respectively, for 24 h. Exposure to 10− 5 M BPA resulted in greater oxidative stress and then inhibited cell proliferation, while ROS scavenger NAC effectively blocked these effects. Exposure to 10− 8 M BPA caused higher intercellular ATP, greater activities of mitochondria, and resulted in significant proliferation of TM4 cells, while oligomycin A, an inhibitor of ATP synthase, abolished these growth advantages.

Conclusions

Our study demonstrated that micromolar BPA inhibits proliferation of Sertoli cells by elevating oxidative stress while nanomolar BPA stimulates proliferation by promoting energy metabolism.

General significance

Micromolar BPA inhibits cell proliferation by elevating oxidative stress while nanomolar BPA stimulates cell proliferation by promoting energy metabolism.  相似文献   
935.
Understanding miRNAs' regulatory networks and target genes could facilitate the development of therapies for human diseases such as cancer. Although much useful gene expression profiling data for tumor cell lines is available, microarray data for miRNAs and mRNAs in the human HepG2 cell line have only been compared with that of other cell lines separately. The relationship between miRNAs and mRNAs in integrated expression profiles for HepG2 cells is still unknown. To explore the miRNA–mRNA correlations in hepatocellular carcinoma (HCC) cells, we performed miRNA and mRNA expression profiling in HepG2 cells and normal liver HL-7702 cells at the genome scale using next-generation sequencing technology. We identified 193 miRNAs that are differentially expressed in these two cell lines. Of these, 89 miRNAs were down-regulated in HepG2 cells compared with HL-7702 cells, while 104 miRNAs were up-regulated. We also observed 3035 mRNAs that are significantly dys-regulated in HepG2 cells. We then performed an integrated analysis of the expression data for differentially expressed miRNAs and mRNAs and found several miRNA–mRNA pairs that are significantly correlated in HepG2 cells. Further analysis suggested that these differentially expressed genes were enriched in four tumorigenesis-related signaling pathways, namely, ErbB, JAK–STAT, mTOR, and WNT, which until now had not been fully reported. Our results could be helpful in understanding the mechanisms of HCC occurrence and development.  相似文献   
936.
937.
为进一步确定黑曲霉菌株TCCC41650的生物转化能力,以雄甾-4-烯-3,17-二酮(Androstenedione)为底物,利用黑曲霉菌株TCCC41650进行催化,产物经纯化、重结晶后,通过单晶衍射鉴定为16β-羟基雄甾-4-烯-3,17-二酮。转化条件为:培养液pH 6.0,乙醇添加量为2%,投料浓度为1‰时,72 h转化率为85.8%。目前甾体研究领域对于C16β-羟基化的微生物转化未见报道,研究结果为C16β-羟基甾体药物的研发奠定了基础。  相似文献   
938.
939.
940.
MTOR, a central regulator of autophagy, is involved in cancer and cardiovascular and neurological diseases. Modulating the MTOR signaling balance could be of great significance for numerous diseases. No chemical activators of MTOR have been found, and the urgent challenge is to find novel MTOR downstream components. In previous studies, we found a chemical small molecule, 3-benzyl-5-((2-nitrophenoxy) methyl)–dihydrofuran-2(3H)-one (3BDO), that inhibited autophagy in human umbilical vein endothelial cells (HUVECs) and neuronal cells. Here, we found that 3BDO activated MTOR by targeting FKBP1A (FK506-binding protein 1A, 12 kDa). We next used 3BDO to detect novel factors downstream of the MTOR signaling pathway. Activation of MTOR by 3BDO increased the phosphorylation of TIA1 (TIA1 cytotoxic granule-associated RNA binding protein/T-cell-restricted intracellular antigen-1). Finally, we used gene microarray, RNA interference, RNA-ChIP assay, bioinformatics, luciferase reporter assay, and other assays and found that 3BDO greatly decreased the level of a long noncoding RNA (lncRNA) derived from the 3′ untranslated region (3′UTR) of TGFB2, known as FLJ11812. TIA1 was responsible for processing FLJ11812. Further experiments results showed that FLJ11812 could bind with MIR4459 targeting ATG13 (autophagy-related 13), and ATG13 protein level was decreased along with 3BDO-decreased FLJ11812 level. Here, we provide a new activator of MTOR, and our findings highlight the role of the lncRNA in autophagy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号