首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9244篇
  免费   703篇
  国内免费   785篇
  10732篇
  2024年   18篇
  2023年   131篇
  2022年   295篇
  2021年   509篇
  2020年   310篇
  2019年   442篇
  2018年   403篇
  2017年   257篇
  2016年   429篇
  2015年   596篇
  2014年   706篇
  2013年   789篇
  2012年   891篇
  2011年   766篇
  2010年   444篇
  2009年   436篇
  2008年   465篇
  2007年   404篇
  2006年   362篇
  2005年   259篇
  2004年   251篇
  2003年   204篇
  2002年   155篇
  2001年   134篇
  2000年   124篇
  1999年   103篇
  1998年   101篇
  1997年   92篇
  1996年   84篇
  1995年   73篇
  1994年   66篇
  1993年   46篇
  1992年   79篇
  1991年   47篇
  1990年   34篇
  1989年   37篇
  1988年   22篇
  1987年   25篇
  1986年   25篇
  1985年   26篇
  1984年   11篇
  1983年   9篇
  1982年   10篇
  1981年   6篇
  1980年   5篇
  1979年   9篇
  1976年   4篇
  1973年   5篇
  1971年   4篇
  1968年   6篇
排序方式: 共有10000条查询结果,搜索用时 20 毫秒
851.
852.
AimsThe present study investigated whether transplantation of bone marrow-derived endothelial progenitor cells (BM-EPCs) in renal capillary network improves renal interstitial fibrosis in unilateral ureteral obstruction (UUO) model in mice.Main methodsEx vivo generated, characterized, and cultivated mice BM-EPCs were identified by their vasculogenic properties in vitro. BM-EPCs were labelled with carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) before transplantation. The animal models of UUO were used. Histological changes in renal tubular interstitium were observed with HE and Masson staining. The protein levels of vascular endothelial growth factor(VEGF), hypoxia inducible factor-1α (HIF-1α) and connective tissue growth factor (CTGF) were analyzed by western blotting and immunohistochemistry. Transforming growth factor-β1 (TGF-β1) was detected by immunohistochemistry. Peritubular capillary (PTC) density was determined by CD31 immunostaining.Key findingsTransplanted BM-EPCs were successfully incorporated into the capillary network in the obstructed kidney in vivo. UUO induced a significant decrease in VEGF levels and PTC density in the kidney tissue, which was accompanied by a significant increase in HIF-1α, CTGF and TGF-β1. Transplantation of BM-EPCs increased PTC density, VEGF expression and alleviated the development of renal interstitial fibrosis in UUO mice. No significant pathological changes were found in control mice.SignificanceThe reduction of PTC density and up-regulation of HIF-1α are the important mechanisms of interstitial fibrosis in UUO mice. BM-EPCs transplantation may increase the number of capillary density and alleviate the development of renal fibrosis in obstructive nephropathy in mice.  相似文献   
853.
Kang YJ  Cheng J  Mei LJ  Hu J  Piao Z  Yin SX 《Mikrobiologiia》2010,79(5):664-671
The use of 16S rRNA gene has been a "golden" method to determine the diversity of microbial communities in environmental samples, phylogenetic relationships of prokaryotes and taxonomic position of newly isolated organisms. However due to the presence of multiple heterogeneous 16S rRNA gene copies in many strains, the interpretation of microbial ecology via 16S rRNA sequences is complicated. Purpose of present paper is to demonstrate the extent to which the multiple heterogeneous 16S rRNA gene copies affect RFLP patterns and DGG E profiles by using the genome database. In present genome database, there are 782 bacterial strains in total whose genomes have been completely sequenced and annotated. Among the total strains, 639 strains (82%) possess multiple 16S rRNA gene copies, 415 strains (53%) whose multiple copies are heterogeneous in sequences as revealed by alignment, 236 strains (30%) whose multiple copies show different restrict patterns by CSP61 + Hinfl, MspI + Rsal or HhaI as analyzed in silico. Polymorphisms of the multiple copies in certain strains were further characterized by G + C% and phylogentic distances based on the sequences of V3 region, which are linked to DGGE patters. Polymorphisms of a few strains were shown as examples. Using artificial communities, it is demonstrated that the presence of multiple heterogeneous 16S rRNA gene copies potentially leads to over-estimation of the diversity of a community. It is suggested that care must be taken when interpreting 16S rRNA-based RFLP and DGGE data and profiling an environmental community.  相似文献   
854.
Carbohydrate-active enzyme glycosyltransferase family 8 (GT8) includes the plant galacturonosyltransferase1-related gene family of proven and putative α-galacturonosyltransferase (GAUT) and GAUT-like (GATL) genes. We computationally identified and investigated this family in 15 fully sequenced plant and green algal genomes and in the National Center for Biotechnology Information nonredundant protein database to determine the phylogenetic relatedness of the GAUTs and GATLs to other GT8 family members. The GT8 proteins fall into three well-delineated major classes. In addition to GAUTs and GATLs, known or predicted to be involved in plant cell wall biosynthesis, class I also includes a lower plant-specific GAUT and GATL-related (GATR) subfamily, two metazoan subfamilies, and proteins from other eukaryotes and cyanobacteria. Class II includes galactinol synthases and plant glycogenin-like starch initiation proteins that are not known to be directly involved in cell wall synthesis, as well as proteins from fungi, metazoans, viruses, and bacteria. Class III consists almost entirely of bacterial proteins that are lipooligo/polysaccharide α-galactosyltransferases and α-glucosyltransferases. Sequence motifs conserved across all GT8 subfamilies and those specific to plant cell wall-related GT8 subfamilies were identified and mapped onto a predicted GAUT1 protein structure. The tertiary structure prediction identified sequence motifs likely to represent key amino acids involved in catalysis, substrate binding, protein-protein interactions, and structural elements required for GAUT1 function. The results show that the GAUTs, GATLs, and GATRs have a different evolutionary origin than other plant GT8 genes, were likely acquired from an ancient cyanobacterium (Synechococcus) progenitor, and separate into unique subclades that may indicate functional specialization.Plant cell walls are composed of three principal types of polysaccharides: cellulose, hemicellulose, and pectin. Studying the biosynthesis and degradation of these biopolymers is important because cell walls have multiple roles in plants, including providing structural support to cells and defense against pathogens, serving as cell-specific developmental and differentiation markers, and mediating or facilitating cell-cell communication. In addition to their important roles within plants, cell walls also have many economic uses in human and animal nutrition and as sources of natural textile fibers, paper and wood products, and components of fine chemicals and medicinal products. The study of the biosynthesis and biodegradation of plant cell walls has become even more significant because cell walls are the major components of biomass (Mohnen et al., 2008), which is the most promising renewable source for the production of biofuels and biomaterials (Ragauskas et al., 2006; Pauly and Keegstra, 2008). Analyses of fully sequenced plant genomes have revealed that they encode hundreds or even thousands of carbohydrate-active enzymes (CAZy; Henrissat et al., 2001; Yokoyama and Nishitani, 2004; Geisler-Lee et al., 2006). Most of these CAZy enzymes (Cantarel et al., 2009) are glycosyltransferases (GTs) or glycoside hydrolases, which are key players in plant cell wall biosynthesis and modification (Cosgrove, 2005).The CAZy database is classified into 290 protein families (www.cazy.org; release of September 2008), of which 92 are GT families (Cantarel et al., 2009). A number of the GT families have been previously characterized to be involved in plant cell wall biosynthesis. For example, the GT2 family is known to include cellulose synthases and some hemicellulose backbone synthases (Lerouxel et al., 2006), such as mannan synthases (Dhugga et al., 2004; Liepman et al., 2005), putative xyloglucan synthases (Cocuron et al., 2007), and mixed linkage glucan synthases (Burton et al., 2006). With respect to the synthesis of xylan, a type of hemicellulose, four Arabidopsis (Arabidopsis thaliana) proteins from the GT43 family, irregular xylem 9 (IRX9), IRX14, IRX9-L, and IRX14-L, and two proteins from the GT47 family, IRX10 and IRX10-L, are candidates (York and O''Neill, 2008) for glucuronoxylan backbone synthases (Brown et al., 2007, 2009; Lee et al., 2007a; Peña et al., 2007; Wu et al., 2009). In addition, three proteins have been implicated in the synthesis of an oligosaccharide thought to act either as a primer or terminator in xylan synthesis (Peña et al., 2007): two from the GT8 family (IRX8/GAUT12 [Persson et al., 2007] and PARVUS/GATL1 [Brown et al., 2007; Lee et al., 2007b]) and one from the GT47 family (FRA8/IRX7 [Zhong et al., 2005]).The GT families involved in the biosynthesis of pectins have been relatively less studied until recently. In 2006, a gene in CAZy family GT8 was shown to encode a functional homogalacturonan α-galacturonosyltransferase, GAUT1 (Sterling et al., 2006). GAUT1 belongs to a 25-member gene family in Arabidopsis, the GAUT1-related gene family, that includes two distinct but closely related families, the galacturonosyltransferase (GAUT) genes and the galacturonosyltransferase-like (GATL) genes (Sterling et al., 2006). Another GAUT gene, GAUT8/QUA1, has been suggested to be involved in pectin and/or xylan synthesis, based on the phenotypes of plant lines carrying mutations in this gene (Bouton et al., 2002; Orfila et al., 2005). It has further been suggested that multiple members of the GT8 family are galacturonosyltransferases involved in pectin and/or xylan biosynthesis (Mohnen, 2008; Caffall and Mohnen, 2009; Caffall et al., 2009).Aside from the 25 GAUT and GATL genes, Arabidopsis has 16 other family GT8 genes, according to the CAZy database, which do not seem to have the conserved sequence motifs found in GAUTs and GATLs: HxxGxxKPW and GLG (Sterling et al., 2006). Eight of these 16 genes are annotated as galactinol synthase (GolS) by The Arabidopsis Information Resource (TAIR; www.arabidopsis.org), and three of these AtGolS enzymes have been implicated in the synthesis of raffinose family oligosaccharides that are associated with stress tolerance (Taji et al., 2002). The other eight Arabidopsis GT8 genes are annotated as plant glycogenin-like starch initiation proteins (PGSIPs) in TAIR. PGSIPs have been proposed to be involved in the synthesis of primers necessary for starch biosynthesis (Chatterjee et al., 2005). Hence, the GT8 family is a protein family consisting of enzymes with very distinct proven and proposed functions. Indeed, a suggestion has been made to split the GT8 family into two groups (Sterling et al., 2006), namely, the cell wall biosynthesis-related genes (GAUTs and GATLs) and the non-cell wall synthesis-related genes (GolSs and PGSIPs).We are interested in further defining the functions of the GAUT and GATL proteins in plants, in particular their role(s) in plant cell wall synthesis. The apparent disparate functions of the GT8 family (i.e. the GAUTs and GATLs as proven and putative plant cell wall polysaccharide biosynthetic α-galacturonosyltransferases, the eukaryotic GolSs as α-galactosyltransferases that synthesize the first step in the synthesis of the oligosaccharides stachyose and raffinose, the putative PGSIPs, and the large bacterial GT8 family of diverse α-glucosyltransferases and α-galactosyltransferases involved in lipopolysaccharide and lipooligosaccharide synthesis) indicate that the GT8 family members are involved in several unique types of glycoconjugate and glycan biosynthetic processes (Yin et al., 2010). This observation led us to ask whether any of the GT8 family members are sufficiently closely related to GAUT and GATL genes to be informative regarding GAUT or GATL biosynthetic function(s) and/or mechanism(s).To investigate the relatedness of the members of the GT8 gene family, we carried out a detailed phylogenetic analysis of the entire GT8 family in 15 completely sequenced plant and green algal genomes (
AbbreviationCladeSpeciesGenome PublishedDownloaded from
mpcGreen algaeMicromonas pusilla CCMP1545Worden et al. (2009)JGI version 2.0
mprGreen algaeMicromonas strain RCC299Worden et al. (2009)JGI version 2.0
olGreen algaeOstreococcus lucimarinusPalenik et al. (2007)JGI version 1.0
otGreen algaeOstreococcus tauriDerelle et al. (2006)JGI version 1.0
crGreen algaeChlamydomonas reinhardtiiMerchant et al. (2007)JGI version 3.0
vcGreen algaeVolvox carteri f. nagariensisNoJGI version 1.0
ppMossPhyscomitrella patens ssp. patensRensing et al. (2008)JGI version 1.1
smSpike mossSelaginella moellendorffiiNoJGI version 1.0
ptDicotPopulus trichocarpaTuskan et al. (2006)JGI version 1.1
atDicotArabidopsis thalianaArabidopsis Genome Initiative (2000)TAIR version 9.0
vvDicotVitis viniferaJaillon et al. (2007)http://www.genoscope.cns.fr/
gmDicotGlycine maxSchmutz et al. (2010)JGI version 1.0
osMonocotOryza sativaGoff et al. (2002); Yu et al. (2002)TIGR version 6.1
sbMonocotSorghum bicolorPaterson et al. (2009)JGI version 1.0
bdMonocotBrachypodium distachyonVogel et al. (2010)JGI version 1.0
Open in a separate window  相似文献   
855.
A major QTL for resistance to Gibberella stalk rot in maize   总被引:1,自引:0,他引:1  
Qin Yang  Guangming Yin  Yanling Guo  Dongfeng Zhang  Shaojiang Chen  Mingliang Xu 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2010,121(4):673-687
Fusarium graminearum Schwabe, the conidial form of Gibberella zeae, is the causal fungal pathogen responsible for Gibberella stalk rot of maize. Using a BC1F1 backcross mapping population derived from a cross between ‘1145’ (donor parent, completely resistant) and ‘Y331’ (recurrent parent, highly susceptible), two quantitative trait loci (QTLs), qRfg1 and qRfg2, conferring resistance to Gibberella stalk rot have been detected. The major QTL qRfg1 was further confirmed in the double haploid, F2, BC2F1, and BC3F1 populations. Within a qRfg1 confidence interval, single/low-copy bacterial artificial chromosome sequences, anchored expressed sequence tags, and insertion/deletion polymorphisms, were exploited to develop 59 markers to saturate the qRfg1 region. A step by step narrowing-down strategy was adopted to pursue fine mapping of the qRfg1 locus. Recombinants within the qRfg1 region, screened from each backcross generation, were backcrossed to ‘Y331’ to produce the next backcross progenies. These progenies were individually genotyped and evaluated for resistance to Gibberella stalk rot. Significant (or no significant) difference in resistance reactions between homozygous and heterozygous genotypes in backcross progeny suggested presence (or absence) of qRfg1 in ‘1145’ donor fragments. The phenotypes were compared to sizes of donor fragments among recombinants to delimit the qRfg1 region. Sequential fine mapping of BC4F1 to BC6F1 generations enabled us to progressively refine the qRfg1 locus to a ~500-kb interval flanked by the markers SSR334 and SSR58. Meanwhile, resistance of qRfg1 to Gibberella stalk rot was also investigated in BC3F1 to BC6F1 generations. Once introgressed into the ‘Y331’ genome, the qRfg1 locus could steadily enhance the frequency of resistant plants by 32–43%. Hence, the qRfg1 locus was capable of improving maize resistance to Gibberella stalk rot.  相似文献   
856.
OsC6, Encoding a Lipid Transfer Protein,Is Required for Postmeiotic Anther Development In Rice     
Dasheng Zhang  Wanqi Liang  Changsong Yin  Jie Zong  Fangwei Gu  Dabing Zhang 《Plant physiology》2010,154(1):149-162
  相似文献   
857.
Identification and functional characterisation of the promoter of the calcium sensor gene <Emphasis Type="Italic">CBL1</Emphasis> from the xerophyte <Emphasis Type="Italic">Ammopiptanthus mongolicus</Emphasis>     
Lili Guo  Yanhua Yu  Xinli Xia  Weilun Yin 《BMC plant biology》2010,10(1):18

Background  

CBL1 is a calcium sensor that regulates drought, cold and salt signals in Arabidopsis. Overexpression of CBL1 gene in Arabidopsis and in Ammopiptanthus mongolicus showed different tolerant activities. We are interested in understanding the molecular mechanism of the upstream region of the CBL1 gene of A. mongolicus (AmCBL1). We investigated and characterized the promoter of the AmCBL1 gene, for promoters play a very important role in regulating gene expression in eukaryotes.  相似文献   
858.
Accumulation and oxidative stress biomarkers in Japanese flounder larvae and juveniles under chronic cadmium exposure   总被引:1,自引:0,他引:1  
Liang Cao  Wei Huang  Jinhu Liu  Xuebo Yin  Shuozeng Dou 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2010,151(3):386-392
This study investigated how Cd exposure affected oxidative biomarkers in Japanese flounder, Paralichthys olivaceus, at early life stages (ELS). Fish were exposed to waterborne Cd (0–48 µg L− 1) from embryonic to juvenile stages for 80 days. Growth, Cd accumulation, activities of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), glutathione S-transferase (GST, EC 2.5.1.18), and levels of glutathione (GSH) and lipid peroxidation (LPO) were investigated at three developmental stages. Flounder growth decreased and Cd accumulation increased with increasing Cd concentration. In metamorphosing larvae, CAT and SOD activities were inhibited and GSH level was elevated, while LPO was enhanced by increasing Cd concentrations. CAT and GST activities of settling larvae were inhibited but GSH level was elevated at high Cd concentrations. In juveniles, SOD activity and LPO level were increased but GST activity was inhibited as Cd concentration increased. Antioxidants in flounder at ELS were able to develop ductile responses to defend against oxidative stress, but LPO fatally occurred due to Cd exposure. These biochemical parameters could be used as effective oxidative biomarkers for evaluating Cd contamination and toxicity in marine environments: CAT, SOD, GSH, and LPO for metamorphosing stage; CAT, GSH, and GST for settling stage; and SOD, GST, and LPO for juvenile stage.  相似文献   
859.
Proteomics Analysis of the Cardiac Myofilament Subproteome Reveals Dynamic Alterations in Phosphatase Subunit Distribution     
Xiaoke Yin  Friederike Cuello  Ursula Mayr  Zhiqi Hao  Martin Hornshaw  Elisabeth Ehler  Metin Avkiran    Manuel Mayr 《Molecular & cellular proteomics : MCP》2010,9(3):497-509
Myofilament proteins are responsible for cardiac contraction. The myofilament subproteome, however, has not been comprehensively analyzed thus far. In the present study, cardiomyocytes were isolated from rodent hearts and stimulated with endothelin-1 and isoproterenol, potent inducers of myofilament protein phosphorylation. Subsequently, cardiomyocytes were “skinned,” and the myofilament subproteome was analyzed using a high mass accuracy ion trap tandem mass spectrometer (LTQ Orbitrap XL) equipped with electron transfer dissociation. As expected, a small number of myofilament proteins constituted the majority of the total protein mass with several known phosphorylation sites confirmed by electron transfer dissociation. More than 600 additional proteins were identified in the cardiac myofilament subproteome, including kinases and phosphatase subunits. The proteomic comparison of myofilaments from control and treated cardiomyocytes suggested that isoproterenol treatment altered the subcellular localization of protein phosphatase 2A regulatory subunit B56α. Immunoblot analysis of myocyte fractions confirmed that β-adrenergic stimulation by isoproterenol decreased the B56α content of the myofilament fraction in the absence of significant changes for the myosin phosphatase target subunit isoforms 1 and 2 (MYPT1 and MYPT2). Furthermore, immunolabeling and confocal microscopy revealed the spatial redistribution of these proteins with a loss of B56α from Z-disc and M-band regions but increased association of MYPT1/2 with A-band regions of the sarcomere following β-adrenergic stimulation. In summary, we present the first comprehensive proteomics data set of skinned cardiomyocytes and demonstrate the potential of proteomics to unravel dynamic changes in protein composition that may contribute to the neurohormonal regulation of myofilament contraction.Myofilament proteins comprise the fundamental contractile apparatus of the heart, the cardiac sarcomere. They are subdivided into thin filament proteins, including actin, tropomyosin, the troponin complex (troponin C, troponin I, and troponin T), and thick filament proteins, including myosin heavy chains, myosin light chains, and myosin-binding protein C. Although calcium is the principal regulator of cardiac contraction through the excitation-contraction coupling process that culminates in calcium binding to troponin C, myofilament function is also significantly modulated by phosphorylation of constituent proteins, such as cardiac troponin I (cTnI),1 cardiac myosin-binding protein C (cMyBP-C), and myosin regulatory light chain (MLC-2). “Skinned” myocyte preparations from rodent hearts, in which the sarcolemmal envelope is disrupted through the use of detergents, have been invaluable in providing mechanistic information on the functional consequences of myofilament protein phosphorylation following exposure to neurohormonal stimuli that activate pertinent kinases prior to skinning or direct exposure to such kinases in active form after skinning (for recent examples, see studies on the phosphorylation of cTnI (13), cMyBP-C (46), and MLC-2 (79)). Nevertheless, to date, only a few myofilament proteins have been studied using proteomics (1019), and a detailed proteomic characterization of the myofilament subproteome and its associated proteins from skinned myocytes has not been performed. In the present analysis, we used an LTQ Orbitrap XL equipped with ETD (20) to analyze the subproteome of skinned cardiomyocytes with or without prior stimulation. Endothelin-1 and isoproterenol were used to activate the endothelin receptor/protein kinase C and β-adrenoreceptor/protein kinase A pathway, respectively (21, 22). Importantly, the mass accuracy of the Orbitrap mass analyzer helped to distinguish true phosphorylation sites from false assignments, and the sensitivity of the ion trap provided novel insights into the translocation of phosphatase regulatory and targeting subunits following β-adrenergic stimulation.  相似文献   
860.
Proteomics Characterization of Extracellular Space Components in the Human Aorta     
Athanasios Didangelos  Xiaoke Yin  Kaushik Mandal  Mark Baumert  Marjan Jahangiri  Manuel Mayr 《Molecular & cellular proteomics : MCP》2010,9(9):2048-2062
The vascular extracellular matrix (ECM) is essential for the structural integrity of the vessel wall and also serves as a substrate for the binding and retention of secreted products of vascular cells as well as molecules coming from the circulation. Although proteomics has been previously applied to vascular tissues, few studies have specifically targeted the vascular ECM and its associated proteins. Thus, its detailed composition remains to be characterized. In this study, we describe a methodology for the extraction of extracellular proteins from human aortas and their identification by proteomics. The approach is based on (a) effective decellularization to enrich for scarce extracellular proteins, (b) successful solubilization and deglycosylation of ECM proteins, and (c) relative estimation of protein abundance using spectral counting. Our three-step extraction approach resulted in the identification of 103 extracellular proteins of which one-third have never been reported in the proteomics literature of vascular tissues. In particular, three glycoproteins (podocan, sclerostin, and agrin) were identified for the first time in human aortas at the protein level. We also identified extracellular adipocyte enhancer-binding protein 1, the cartilage glycoprotein asporin, and a previously hypothetical protein, retinal pigment epithelium (RPE) spondin. Moreover, our methodology allowed us to screen for proteolysis in the aortic samples based on the identification of proteolytic enzymes and their corresponding degradation products. For instance, we were able to detect matrix metalloproteinase-9 by mass spectrometry and relate its presence to degradation of fibronectin in a clinical specimen. We expect this proteomics methodology to further our understanding of the composition of the vascular extracellular environment, shed light on ECM remodeling and degradation, and provide insights into important pathological processes, such as plaque rupture, aneurysm formation, and restenosis.Vascular cells, in particular vascular smooth muscle cells, produce and maintain a complex meshwork of ECM.1 The ECM is not only the scaffold for the anchorage and mobility of residing cells but also absorbs and transduces the shear and strain forces of the blood flow. It is primarily composed of elastin, collagen, proteoglycans, and glycoproteins. The elastin fibers and type I and III fibrillar collagens form a rigid network of highly cross-linked interstitial matrix. They offer elasticity (elastin) and tensile strength (collagens). Proteoglycans, because of their negative charge, attract water and confer resistance to compression. Finally, glycoproteins participate in matrix organization and are essential for cell attachment.The vascular ECM also serves as a substrate for the binding and retention of secreted, soluble proteins of vascular cells as well as molecules coming from the circulation, including lipoproteins, growth factors, cytokines, proteases, and protease inhibitors. These components are invariably associated with ECM proteins, especially proteoglycans. Together they comprise the vascular extracellular environment and are pivotal for disease processes, such as atherosclerosis and aneurysm formation (1).Although proteomics has been previously applied to vascular tissues, only one study has specifically targeted the extracellular vascular environment (2). This study was focused on the isolation of intimal proteoglycans from human carotid arteries. Moreover, most proteomics studies use whole tissue lysates, which are rich in cellular proteins that inevitably mask the identification of the less abundant proteins of the vascular extracellular environment (35). Thus, the composition of the vascular ECM and its associated proteins remains poorly defined. In the present study, we used morphologically normal human aortic samples to develop a method for the extraction of proteins present in the extracellular environment, including ECM proteins and proteins attached to the ECM. We had three specific aims: first, to reduce the contamination with cellular proteins, thereby increasing the chance of identifying scarce extracellular proteins; second, to efficiently solubilize and deglycosylate ECM proteins to improve their analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS); and third, to interface the nanoflow LC system to a recently developed injection device, which splits the flow from the analytical column, to allow the reanalysis of the same sample during a single LC-MS/MS run (RePlay, Advion).Our methodology provides a detailed overview of the aortic ECM and its associated proteins, many reported for the first time in proteomics analysis of the vasculature. Most importantly, this method could be adapted for use with other tissues to further our understanding of the composition of extracellular environment and ECM turnover under various disease conditions.  相似文献   
[首页] « 上一页 [81] [82] [83] [84] [85] 86 [87] [88] [89] [90] [91] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号