首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   377篇
  免费   16篇
  国内免费   30篇
  2023年   5篇
  2022年   10篇
  2021年   22篇
  2020年   15篇
  2019年   13篇
  2018年   14篇
  2017年   11篇
  2016年   11篇
  2015年   24篇
  2014年   24篇
  2013年   31篇
  2012年   43篇
  2011年   36篇
  2010年   17篇
  2009年   15篇
  2008年   23篇
  2007年   15篇
  2006年   18篇
  2005年   12篇
  2004年   10篇
  2003年   6篇
  2002年   10篇
  2001年   6篇
  2000年   5篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   5篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有423条查询结果,搜索用时 243 毫秒
101.
Rationale: Corticosteroid resistance (CR) seriously affects the therapeutic effects of steroids on many chronic inflammatory disorders, including airway allergy. The mechanism of CR development is unclear. Recent research indicates that livin, an apoptosis inhibitor, is associated with the regulation in cell activities. This study investigates the role of livin in the inducing and sustaining CR in the airway mucosa.Methods: Nasal epithelial cells (NECs) were isolated from surgically removed nasal mucosal tissues of patients with allergic rhinitis (AR) and nasal polyps with or without CR. Differentially expressed genes in NECs were analyzed by the RNA sequencing. A CR mouse model was developed to test the role of livin in CR development.Results: The results showed that NECs of AR patients with CR expressed high levels of livin, that was positively correlated with the thymic stromal lymphopoietin (TSLP) expression and the high Ras activation status in NECs. Livin and Ras activation mutually potentiating each other in the inducing and sustaining the TSLP expression in NECs. TSLP induced eosinophils and neutrophils to express glucocorticoid receptor-β (GRβ). Eosinophils and neutrophils with high CRβ expression were resistant to corticosteroids. Depletion of livin or inhibition of TSLP markedly attenuated CR and airway allergy.Conclusions: Livin facilitates CR development in the airways by promoting TSLP expression in epithelial cells and the GRβ expression in eosinophils and neutrophils. Depletion of livin or inhibiting TSLP attenuates CR development and inhibits airway allergy, this has the translational potential to be used in the treatment of airway allergy.  相似文献   
102.
Sulfolobus solfataricus DNA polymerase IV (Dpo4), a prototype Y-family DNA polymerase, contains a unique little finger domain besides a catalytic core. Here, we report the chemical shift assignments for the backbone nitrogens, α and β carbons, and amide protons of the little finger domain of Dpo4. This work and our published backbone assignment for the catalytic core provide the basis for investigating the conformational dynamics of Dpo4 during catalysis using solution NMR spectroscopy.  相似文献   
103.
Immune mapped protein-1 (IMP1) is a new protective protein in apicomplexan parasites, and exits in Eimeria tenella. But its structure and immunogenicity in E. tenella are still unknown. In this study, IMPI in E. tenella was predicted to be a membrane protein. To evaluate immunogenicity of IMPI in E. tenella, a chimeric subunit vaccine consisting of E. tenella IMP1 (EtIMP1) and a molecular adjuvant (a truncated flagellin, FliC) was constructed and over-expressed in Escherichia coli and its efficacy against E. tenella infection was evaluated. Three-week-old AA broiler chickens were vaccinated with the recombinant EtIMP1-truncated FliC without adjuvant or EtIMP1 with Freund’s Complete Adjuvant. Immunization of chickens with the recombinant EtIMP1-truncated FliC fusion protein resulted in stronger cellular immune responses than immunization with only recombinant EtIMP1 with adjuvant. The clinical effect of the EtIMP1-truncated FliC without adjuvant was also greater than that of the EtIMP1 with adjuvant, which was evidenced by the differences between the two groups in body weight gain, oocyst output and caecal lesions of E. tenella-challenged chickens. The results suggested that the EtIMP1-flagellin fusion protein can be used as an effective immunogen in the development of subunit vaccines against Eimeria infection. This is the first demonstration of antigen-specific protective immunity against avian coccidiosis using a recombinant flagellin as an apicomplexan parasite vaccine adjuvant in chickens.  相似文献   
104.
The heme enzyme indoleamine 2,3-dioxygenase (IDO) is a key regulator of immune responses through catalyzing l-tryptophan (l-Trp) oxidation. Here, we show that hydrogen peroxide (H2O2) activates the peroxidase function of IDO to induce protein oxidation and inhibit dioxygenase activity. Exposure of IDO-expressing cells or recombinant human IDO (rIDO) to H2O2 inhibited dioxygenase activity in a manner abrogated by l-Trp. Dioxygenase inhibition correlated with IDO-catalyzed H2O2 consumption, compound I-mediated formation of protein-centered radicals, altered protein secondary structure, and opening of the distal heme pocket to promote nonproductive substrate binding; these changes were inhibited by l-Trp, the heme ligand cyanide, or free radical scavengers. Protection by l-Trp coincided with its oxidation into oxindolylalanine and kynurenine and the formation of a compound II-type ferryl-oxo heme. Physiological peroxidase substrates, ascorbate or tyrosine, enhanced rIDO-mediated H2O2 consumption and attenuated H2O2-induced protein oxidation and dioxygenase inhibition. In the presence of H2O2, rIDO catalytically consumed nitric oxide (NO) and utilized nitrite to promote 3-nitrotyrosine formation on IDO. The promotion of H2O2 consumption by peroxidase substrates, NO consumption, and IDO nitration was inhibited by l-Trp. This study identifies IDO as a heme peroxidase that, in the absence of substrates, self-inactivates dioxygenase activity via compound I-initiated protein oxidation. l-Trp protects against dioxygenase inactivation by reacting with compound I and retarding compound II reduction to suppress peroxidase turnover. Peroxidase-mediated dioxygenase inactivation, NO consumption, or protein nitration may modulate the biological actions of IDO expressed in inflammatory tissues where the levels of H2O2 and NO are elevated and l-Trp is low.  相似文献   
105.
The low success rate of animal cloning by somatic cell nuclear transfer (SCNT) associates with epigenetic aberrancy, including the abnormal acetylation of histones. Altering the epigenetic status by histone deacetylase inhibitors (HDACi) enhances the developmental potential of SCNT embryos. In the current study, we examined the effects of LBH589 (panobinostat), a novel broad-spectrum HDACi, on the nuclear reprogramming and development of pig SCNT embryos in vitro. In experiment 1, we compared the in vitro developmental competence of nuclear transfer embryos treated with different concentrations of LBH589. Embryos treated with 50 nM LBH589 for 24 hours showed a significant increase in the rate of blastocyst formation compared with the control or embryos treated with 5 or 500 nM LBH589 (32.4% vs. 11.8%, 12.1%, and 10.0%, respectively, P < 0.05). In experiment 2, we examined the in vitro developmental competence of nuclear transfer embryos treated with 50 nM LBH589 for various intervals after activation and 6-dimethylaminopurine. Embryos treated for 24 hours had higher rates of blastocyst formation than the other groups. In experiment 3, when the acetylation of H4K12 was examined in SCNT embryos treated for 6 hours with 50 nM LBH589 by immunohistochemistry, the staining intensities of these proteins in LBH589-treated SCNT embryos were significantly higher than in the control. In experiment 4, LBH589-treated nuclear transfer and control embryos were transferred into surrogate mothers, resulting in three (100%) and two (66.7%) pregnancies, respectively. In conclusion, LBH589 enhances the nuclear reprogramming and developmental potential of SCNT embryos by altering the epigenetic status and expression, and increasing blastocyst quality.  相似文献   
106.
The secretory pathway is responsible for the transport of newly synthesized transmembrane proteins from the endoplasmic reticulum to their destinations via the Golgi/trans-Golgi network (TGN), Cargo proteins at each sta- tion are actively sorted by specific sorting signals on the cargo and the corresponding coat complexes. Here, we used the Arabidopsis regulator of G-protein signaling (AtRGS1), which contains an N-terminal potentially sensing glucose seven-transmembrane domain and a C-terminal RGS domain, as a model to uncover sorting motifs required for its cell surface expression. Expression of wild-type and truncated or mutated AtRGS1 fluorescent fusion proteins identified two cysteine residues in the extracellular N-terminus that are essential for endoplasmic reticulum exit and/or correct folding of AtRGS1. The linker between the seven-transmembrane and RGS domains contains an endoplasmic reticulum export signal, whereas the C-terminus is dispensable for the plasma membrane expression of AtRGS1. Interestingly, deletion of the RGS domain results in Golgi/TGN localization of the truncated AtRGS1. Further analysis using site-directed mutagen- esis showed that a tyrosine-based motif embedded in the RGS domain is essential for Golgi/TGN export of AtRGS1. These results reveal a new role for the RGS domain in regulating AtRGS1 trafficking from the Golgi/TGN to the plasma membrane and explain the interaction between the seven-transmembrane and RGS domains.  相似文献   
107.
Brown JA  Suo Z 《Biochemistry》2011,50(7):1135-1142
To maintain genomic stability, ribonucleotide incorporation during DNA synthesis is controlled predominantly at the DNA polymerase level. A steric clash between the 2'-hydroxyl of an incoming ribonucleotide and a bulky active site residue, known as the "steric gate", establishes an effective mechanism for most DNA polymerases to selectively insert deoxyribonucleotides. Recent kinetic, structural, and in vivo studies have illuminated novel features about ribonucleotide exclusion and the mechanistic consequences of ribonucleotide misincorporation on downstream events, such as the bypass of a ribonucleotide in a DNA template and the subsequent extension of the DNA lesion bypass product. These important findings are summarized in this review.  相似文献   
108.
In eukaryotic DNA replication, DNA polymerase ε (Polε) is responsible for leading strand synthesis, whereas DNA polymerases α and δ synthesize the lagging strand. The human Polε (hPolε) holoenzyme is comprised of the catalytic p261 subunit and the noncatalytic p59, p17, and p12 small subunits. So far, the contribution of the noncatalytic subunits to hPolε function is not well understood. Using pre-steady-state kinetic methods, we established a minimal kinetic mechanism for DNA polymerization and editing catalyzed by the hPolε holoenzyme. Compared with the 140-kDa N-terminal catalytic fragment of p261 (p261N), which we kinetically characterized in our earlier studies, the presence of the p261 C-terminal domain (p261C) and the three small subunits increased the DNA binding affinity and the base substitution fidelity. Although the small subunits enhanced correct nucleotide incorporation efficiency, there was a wide range of rate constants when incorporating a correct nucleotide over a single-base mismatch. Surprisingly, the 3′→5′ exonuclease activity of the hPolε holoenzyme was significantly slower than that of p261N when editing both matched and mismatched DNA substrates. This suggests that the presence of p261C and the three small subunits regulates the 3′→5′ exonuclease activity of the hPolε holoenzyme. Together, the 3′→5′ exonuclease activity and the variable mismatch extension activity modulate the overall fidelity of the hPolε holoenzyme by up to 3 orders of magnitude. Thus, the presence of p261C and the three noncatalytic subunits optimizes the dual enzymatic activities of the catalytic p261 subunit and makes the hPolε holoenzyme an efficient and faithful replicative DNA polymerase.  相似文献   
109.
Polycystic ovary syndrome (PCOS), the most common female endocrine disease that causes anovulatory infertility, still lacks promising strategy for the accurate diagnosis and effective therapeutics of PCOS attributed to its unclear aetiology. In this study, we determined the abnormal reduction in circPSMC3 expression by comparing the ovarian tissue samples of PCOS patients and normal individuals. The symptom relief caused by up‐regulation of circPSMC3 in PCOS model mice suggested the potential for further study. In vitro functional experiments confirmed that circPSMC3 can inhibit cell proliferation and promote apoptosis by blocking the cell cycle in human‐like granular tumour cell lines. Mechanism study revealed that circPSMC3 may play its role through sponging miR‐296‐3p to regulate PTEN expression. Collectively, we preliminarily characterized the role and possible insights of circPSMC3/miR‐296‐3p/PTEN axis in the proliferation and apoptosis of KGN cells. We hope that this work provides some original and valuable information for the research of circRNAs in PCOS, not only to better understand the pathogenesis but also to help provide new clues for seeking for the future therapeutic target of PCOS.  相似文献   
110.
Although much effort has been put in the studies of weak in vivo microscale movements due to its importance, the real‐time, long‐time, and accurate monitoring is still a great challenge because of the complexity of the in vivo environment. Here, a new type of mechanically asymmetrical triboelectric nanogenerator with ultrashort working distance and high anti‐interference ability is developed to accurately and real‐timely monitor the microscopically weak movement of intestinal motility at low frequencies even around 0.3 Hz. The intestinal status after the glucose absorption, and physiological states in different times also have been monitored successfully in the complex in vivo environment with many kinds of interference and noises. This work gives a new self‐powered, long‐time and in vivo technical way for the real‐timely gastrointestinal motility monitoring, and contributes to the detection of every kind of gentle movements in various complex bio‐systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号