首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7624篇
  免费   816篇
  国内免费   780篇
  9220篇
  2024年   21篇
  2023年   81篇
  2022年   220篇
  2021年   374篇
  2020年   302篇
  2019年   359篇
  2018年   349篇
  2017年   270篇
  2016年   374篇
  2015年   503篇
  2014年   526篇
  2013年   582篇
  2012年   721篇
  2011年   633篇
  2010年   408篇
  2009年   351篇
  2008年   394篇
  2007年   390篇
  2006年   322篇
  2005年   286篇
  2004年   260篇
  2003年   276篇
  2002年   205篇
  2001年   173篇
  2000年   130篇
  1999年   114篇
  1998年   108篇
  1997年   64篇
  1996年   67篇
  1995年   41篇
  1994年   32篇
  1993年   26篇
  1992年   43篇
  1991年   27篇
  1990年   41篇
  1989年   27篇
  1988年   15篇
  1987年   22篇
  1986年   10篇
  1985年   10篇
  1984年   10篇
  1983年   7篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1977年   3篇
  1975年   4篇
  1974年   3篇
  1972年   5篇
排序方式: 共有9220条查询结果,搜索用时 15 毫秒
101.
Phytoplasmas are phloem‐inhabiting, cell wall‐less bacteria that cause numerous plant diseases worldwide. Plants infected by phytoplasmas often exhibit various symptoms indicative of hormonal imbalance. In this study, we investigated the effects of potato purple top (PPT) phytoplasma infection on gibberellin homeostasis in tomato plants. We found that PPT phytoplasma infection caused a significant reduction in endogenous levels of gibberellic acid (GA3). The decrease in GA3 content in diseased plants was correlated with down regulation of genes responsible for biosynthesis of bioactive GAs ( GA20ox1 and GA3ox1) and genes involved in formation of GA precursors [geranyl diphosphate synthase (GPS) and copalyldiphosphate synthase (CPS)]. Exogenous application of GA3 at 200 µmol L?1 was able to restore the GA content in infected plants to levels comparable to those in healthy controls, and to attenuate the characteristic ‘big bud’ symptoms induced by the phytoplasma. The interesting observation that PPT phytoplasma‐infected plants had prolonged low expression of key GA biosynthesis genes GA20ox1 and GA3ox1 under GA deficiency conditions led us to hypothesise that there was a diminished sensitivity of the GA metabolism feedback regulation, especially GA biosynthesis negative feedback regulation, in those affected plants, and such diminished sensitization in early stages of infection may represent a central element of the phytoplasma‐induced disruption of GA homeostasis and pathogenesis.  相似文献   
102.
103.
We report the design, synthesis, and biological evaluation of a new series of HDAC1 inhibitors using click chemistry. Compound 17 bearing a phenyl ring at meta-position was identified to show much better selectivity for HDAC1 over HDAC7 than SAHA. The compond 17 also showed better in vitro anticancer activities against several cancer cell lines than that of SAHA. This work could serve as a foundation for further exploration of selective HDAC inhibitors using the compound 17 molecular scaffold.  相似文献   
104.
Epidermal growth factor receptor (EGFR) is an effective molecular target of anti-cancer therapies. Curcumin inhibits cancer cell growth in vitro by suppressing gene expression of EGFR and reduces tumor growth in various animal models. To overcome instable and insoluble properties of curcumin as therapeutics, we designed and synthesized six novel pyrimidine-substituted curcumin analogues with or without a hydroxyl group originally present in curcumin. The cell viability tests indicated that IC50 of the analogues containing hydroxyl group were 3 to 8-fold lower than those of the analogues without hydroxyl group in two colon cancer cell lines tested. Western blot analysis indicates the analogues containing hydroxyl group inhibited expression and tyrosine phosphorylation of EGFR. Further protein analyses showed that the analogues had anti-cellular proliferation, pro-apoptosis, and cell cycle arrest properties associated with suppressed EGFR expression. These results indicate that the hydroxyl groups in curcumin and the analogues were critical for observed biological activities.  相似文献   
105.

Background

GC content varies greatly between different genomic regions in many eukaryotes. In order to determine whether this organization named isochore organization influences gene expression patterns, the relationship between GC content and gene expression has been investigated in man and mouse. However, to date, this question is still a matter for debate. Among the avian species, chicken (Gallus gallus) is the best studied representative with a complete genome sequence. The distinctive features and organization of its sequence make it a good model to explore important issues in genome structure and evolution.

Methods

Only nuclear genes with complete information on protein-coding sequence with no evidence of multiple-splicing forms were included in this study. Chicken protein coding sequences, complete mRNA sequences (or full length cDNA sequences), and 5 untranslated region sequences (5 UTR) were downloaded from Ensembl and chicken expression data originated from a previous work. Three indices i.e. expression level, expression breadth and maximum expression level were used to measure the expression pattern of a given gene. CpG islands were identified using hgTables of the UCSC Genome Browser. Correlation analysis between variables was performed by SAS Proprietary Software Release 8.1.

Results

In chicken, the GC content of 5 UTR is significantly and positively correlated with expression level, expression breadth, and maximum expression level, whereas that of coding sequences and introns and at the third coding position are negatively correlated with expression level and expression breadth, and not correlated with maximum expression level. These significant trends are independent of recombination rate, chromosome size and gene density. Furthermore, multiple linear regression analysis indicated that GC content in genes could explain approximately 10% of the variation in gene expression.

Conclusions

GC content is significantly associated with gene expression pattern and could be one of the important regulation factors in the chicken genome.  相似文献   
106.
Chlorogenic acid (CGA) is one of the most abundant dietary polyphenols, possessing well-known antioxidant capacity. The present study is designed to observe the protection provided by CGA against acetaminophen (AP)-induced liver injury in mice in vivo and the underlying mechanisms engaged in this process. Serum transaminases analysis and liver histological evaluation demonstrated the protection of CGA against AP-induced liver injury. CGA treatment decreased the increased number of liver apoptotic cells induced by AP in a dose-dependent manner. CGA also inhibited AP-induced cleaved activation of caspase-3, 7. Moreover, CGA reversed AP-decreased liver reduced glutathione (GSH) levels, glutamate-cysteine ligase (GCL) and glutathione reductase activity. Further results showed that CGA increased mRNA and protein expression of the catalytic subunit of GCL (GCLC), thioredoxin (Trx) 1/2 and thioredoxin reductase (TrxR) 1. Furthermore, CGA abrogated AP-induced phospholyated activation of ERK1/2, c-Jun N-terminal kinase (JNK), p38 kinases and molecular signals upstream. The results of this study demonstrate that CGA counteracts AP-induced liver injury at various levels by preventing apoptosis and oxidative stress damage, and more specifically, both the GSH and Trx antioxidant systems and the mitogen-activated protein kinase (MAPK) signaling cascade appear to be engaged in this protective mechanism.  相似文献   
107.
The methionine adenosyltransferase gene (MAT) had been isolated from an economic seaweed Undaria pinnatifida by PCR using degenerate primers. The cDNA was 1,491 bp in length with an open reading frame of 1,194 nucleotides, encoding a deduced protein of 397 amino acids. The protein had a predicted molecular weight of 43.2 kDa, and the isoelectric point was 5.244. The sequence contains a 92 bp 5′-untranslated region (UTR) and a 205 bp 3′-UTR. The methionine adenosyltransferase (MAT) sequence of U. pinnatifida (UpMAT) shared 68–92 % identities with the previous published MAT sequences of other species. Phylogenetic analysis indicated that the phylogenetic relationship of UpMAT with some other seaweeds was closer than with those of higher plants. Under different stress conditions, the relative mRNA expression levels of the MAT of U. pinnatifida (UpMAT) were measured by real-time quantitative PCR, and the results demonstrated that the UpMAT might help to protect the alga against various abiotic stresses.  相似文献   
108.
109.
The brown planthopper (BPH) Nilaparvata lugens is an economically important pest on rice plants. In this study, the higher population density and yellow‐ripe stage of rice plants were used to construct adverse survival conditions (ASC) against BPH nymphs. Simultaneously, the low population density and tillering stage of rice plants were used to establish a suitable survival condition (SSC) as a control. Solexa/Illumina sequencing was used to identify genes of BPH nymphs responding to ASC. Significantly longer duration development of BPH nymphs and significantly lower brachypterous ratio of BPH adults were observed by ASC compared with SSC. A total of 2 544 differentially expressed genes (DEGs) were obtained and analyzed by BLASTx, Gene Ontology and KEGG Orthology. Gene ontology analysis revealed that the DEGs were mainly involved in categories of cell, cell part, cellular process, binding, catalytic, organelle and metabolic processes. 1 138 DEGs having enzyme commission numbers were assigned to different metabolic pathways. The largest clusters were neurodegenerative diseases (137, 12.0%), followed by carbohydrate metabolism (113, 9.9%), amino acid metabolism (94, 8.3%), nucleotide metabolism (76, 6.7%), energy metabolism (64, 5.6%), translation (60, 5.3%), lipid metabolism (58, 5.1%), and folding, sorting and degradation (52, 4.6%). Expressing profile of 11 DEGs during eight nymphal developmental stages of BPH were analyzed by quantitative real‐time polymerase chain reaction. The 11 genes exhibited differential expression between ASC and SSC during at least one developmental stage. The DEGs identified in this study provide molecular proof of how BPH reconfigures its gene expression profile to adapt to overcrowding and low‐quality hosts.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号